985 resultados para Neonatal seizure detection
Resumo:
The Australian Pregnancy Registry, affiliated European Register of Antiepileptic drugs in Pregnancy (EURAP), recruits informed consenting women with epilepsy on treatment with antiepileptic drugs (AEDs), those untreated, and women on AEDs for other indications. Enrolment is considered prospective if it has occurred before presence or absence of major foetal malformations (FMs) are known, or retrospective, if they had occurred after the birth of infant or detection of major FM. Telephone Interviews are conducted to ascertain pregnancy outcome and collect data about seizures. To date 630 women have been enrolled, with 565 known pregnancy outcomes. Valproate (VPA) above 1100 mg/day was associated with a significantly higher incidence of FMs than other AEDs (P < 0.05). This was independent of other AED use or potentially confounding factors on multivariate analysis (OR = 7.3, P < 0.0001). Lamotrigine (LTG) monotherapy (n = 65), has so far been free of malformations. Although seizure control was not a primary outcome, we noted that more patients on LTG than on VPA required dose adjustments to control seizures. Data indicate an increased risk of FM in women taking VPA in doses > 1100 mg/day compared with other AEDs. The choice of AED for pregnant women with epilepsy requires assessment of balance of risks between teratogenicity and seizure control.
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.
Resumo:
OBJECTIVE: The aim of this study was to devise a scoring system that could aid in predicting neurologic outcome at the onset of neonatal seizures. METHODS: A total of 106 newborns who had neonatal seizures and were consecutively admitted to the NICU of the University of Parma from January 1999 through December 2004 were prospectively followed-up, and neurologic outcome was assessed at 24 months’ postconceptional age. We conducted a retrospective analysis on this cohort to identify variables that were significantly related to adverse outcome and to develop a scoring system that could provide early prognostic indications. RESULTS: A total of 70 (66%) of 106 infants had an adverse neurologic outcome. Six variables were identified as the most important independent risk factors for adverse outcome and were used to construct a scoring system: birth weight, Apgar score at 1 minute, neurologic examination at seizure onset, cerebral ultrasound, efficacy of anticonvulsant therapy, and presence of neonatal status epilepticus. Each variable was scored from 0 to 3 to represent the range from “normal” to “severely abnormal.” A total composite score was computed by addition of the raw scores of the 6 variables. This score ranged from 0 to 12. A cutoff score of =4 provided the greatest sensitivity and specificity. CONCLUSIONS: This scoring system may offer an easy, rapid, and reliable prognostic indicator of neurologic outcome after the onset of neonatal seizures. A final assessment of the validity of this score in routine clinical practice will require independent validation in other centers.
Resumo:
Background : Phenobarbital is the first-line choice for neonatal seizures treatment, despite a response rate of approximately 45%. Failure to respond to acute anticonvulsants is associated with poor neurodevelopmental outcome, but knowledge on predictors of refractoriness is limited. Objective : To quantify response rate to phenobarbital and to establish variables predictive of its lack of efficacy. Methods : We retrospectively evaluated newborns with electrographically confirmed neonatal seizures admitted between January 1999 and December 2012 to the neonatal intensive care unit of Parma University Hospital (Italy), excluding neonates with status epilepticus. Response was categorized as complete (cessation of clinical and electrographic seizures after phenobarbital administration), partial (reduction but not cessation of electrographic seizures with the first bolus, response to the second bolus), or absent (no response after the second bolus). Multivariate analysis was used to identify independent predictors of refractoriness. Results : Out of 91 newborns receiving phenobarbital, 57 (62.6%) responded completely, 15 (16.5%) partially, and 19 (20.9%) did not respond. Seizure type (p = 0.02), background electroencephalogram (EEG; p ≤ 0.005), and neurologic examination (p ≤ 0.005) correlated with response to phenobarbital. However, EEG (p ≤ 0.02) and seizure type (p ≤ 0.001) were the only independent predictors. Conclusion : Our results suggest a prominent role of neurophysiological variables (background EEG and electrographic-only seizure type) in predicting the absence of response to phenobarbital in high-risk newborns.
Resumo:
International audience
Resumo:
Introduction Seizures are harmful to the neonatal brain; this compels many clinicians and researchers to persevere further in optimizing every aspects of managing neonatal seizures. Aims To delineate the seizure profile between non-cooled versus cooled neonates with hypoxic-ischaemic encephalopathy (HIE), in neonates with stroke, the response of seizure burden to phenobarbitone and to quantify the degree of electroclinical dissociation (ECD) of seizures. Methods The multichannel video-EEG was used in this research study as the gold standard to detect seizures, allowing accurate quantification of seizure burden to be ascertained in term neonates. The entire EEG recording for each neonate was independently reviewed by at least 1 experienced neurophysiologist. Data were expressed in medians and interquartile ranges. Linear mixed models results were presented as mean (95% confidence interval); p values <0.05 were deemed as significant. Results Seizure burden in cooled neonates was lower than in non-cooled neonates [60(39-224) vs 203(141-406) minutes; p=0.027]. Seizure burden was reduced in cooled neonates with moderate HIE [49(26-89) vs 162(97-262) minutes; p=0.020] when compared with severe HIE. In neonates with stroke, the background pattern showed suppression over the infarcted side and seizures demonstrated a characteristic pattern. Compared with 10 mg/kg, phenobarbitone doses at 20 mg/kg reduced seizure burden (p=0.004). Seizure burden was reduced within 1 hour of phenobarbitone administration [mean (95% confidence interval): -14(-20 to -8) minutes/hour; p<0.001], but seizures returned to pre-treatment levels within 4 hours (p=0.064). The ECD index in cooled, non-cooled neonates with HIE, stroke and in neonates with other diagnoses were 88%, 94%, 64% and 75% respectively. Conclusions Further research exploring the treatment effects on seizure burden in the neonatal brain is required. A change to our current treatment strategy is warranted as we continue to strive for more effective seizure control, anchored with use of the multichannel EEG as the surveillance tool.
Resumo:
Neonatal seizures are common in the neonatal intensive care unit. Clinicians treat these seizures with several anti-epileptic drugs (AEDs) to reduce seizures in a neonate. Current AEDs exhibit sub-optimal efficacy and several randomized control trials (RCT) of novel AEDs are planned. The aim of this study was to measure the influence of trial design on the required sample size of a RCT. We used seizure time courses from 41 term neonates with hypoxic ischaemic encephalopathy to build seizure treatment trial simulations. We used five outcome measures, three AED protocols, eight treatment delays from seizure onset (Td) and four levels of trial AED efficacy to simulate different RCTs. We performed power calculations for each RCT design and analysed the resultant sample size. We also assessed the rate of false positives, or placebo effect, in typical uncontrolled studies. We found that the false positive rate ranged from 5 to 85% of patients depending on RCT design. For controlled trials, the choice of outcome measure had the largest effect on sample size with median differences of 30.7 fold (IQR: 13.7–40.0) across a range of AED protocols, Td and trial AED efficacy (p<0.001). RCTs that compared the trial AED with positive controls required sample sizes with a median fold increase of 3.2 (IQR: 1.9–11.9; p<0.001). Delays in AED administration from seizure onset also increased the required sample size 2.1 fold (IQR: 1.7–2.9; p<0.001). Subgroup analysis showed that RCTs in neonates treated with hypothermia required a median fold increase in sample size of 2.6 (IQR: 2.4–3.0) compared to trials in normothermic neonates (p<0.001). These results show that RCT design has a profound influence on the required sample size. Trials that use a control group, appropriate outcome measure, and control for differences in Td between groups in analysis will be valid and minimise sample size.