994 resultados para Neogene vulcanism
Resumo:
Temporal changes in benthic foraminiferal assemblages were quantitatively examined (> 63 µm fraction) in four southwest Pacific deep-sea Neogene sequences in a depth transect between approximately 1300 and 3200 m to assist in evaluating paleoeeanographic history. The most conspicuous changes in benthic foraminiferal assemblages occurred in association with paleoclimatic changes defined at least in part by oxygen isotopic changes. The largest, centered at ~15 Ma (early Middle Miocene), is represented by an increase in the relative frequencies of Epistominella exigua, which underwent a major upward depth migration at that time. This was contemporaneous with the well-known positive oxygen isotopic shift in the early Middle Miocene. In Sites 588 and 590, most of the increase in relative abundances of E. exigua occurred during the middle to later part of the ~80 shift, following major growth of the east Antarctic ice sheet. Later assemblage changes occurred at 8.5 and 6.5 Ma. These associations indicate that the benthic foraminiferal assemblages in this depth transect largely adjusted to changes in deep waters related to Antarctic cryospheric evolution. In general, the Neogene benthic foraminiferal assemblages in this region underwent little change during the last 23 million years. This faunal conservatism suggests that deep-sea environments underwent relatively little change in the southwest Pacific during much of the Neogene. Although paleoceanographic changes did occur, partly in response to highlatitude cryospheric evolution, these were not of sufficient magnitude to create major deep-sea faunal changes in this part of the ocean. The benthic foraminiferal assemblages are dominated by individuals smaller than 150 µm. Most taxonomic turnover occurred in the larger (> 150 µm) size fractions.
Resumo:
Radiolarians were recovered from three of the five holes investigated during Leg 125. Relative abundances are estimated at Holes 782A and 784A, where preservation is poor to good. Rare, poorly preserved radiolarians are present in Hole 786A. Seven radiolarian zones are recognized in the latest early- middle Miocene to early Pleistocene of Holes 782A and 784A. These zones are approximately correlated to the zones of Sanfilippo and others published in 1985.
Resumo:
Maestrichtian to Holocene calcareous nannofossils from two closely spaced sites on the upper continental rise some 100 miles (161 km) southeast of Atlantic City, New Jersey, were zoned in order to help date a major canyon-cutting event in the late Miocene and to delineate and correlate other hiatuses with seismic stratigraphy. Mid-middle Eocene through middle Miocene sediments (Zones CP14 to CN6) were not recovered in these holes, but nearly all other zones are accounted for. The Eocene section is described in a companion chapter (Applegate and Wise, 1987, doi:10.2973/dsdp.proc.93.118.1987). Nannofossils are generally sparse and moderately preserved in the clastic sediments of Site 604. Sedimentation rates are extremely high for the upper Pleistocene (201 m/m.y. minimum) above a hiatus calculated to span 0.44 to 1.1 Ma. The associated disconformity is correlated with local seismic reflection Horizon Pr . Sedimentation rates continue to be high (93 m/m.y.) down to a second hiatus in the upper Pliocene dated from about 2.4 to 2.9 (or possibly 3.3) Ma. The disconformity associated with this hiatus is correlated with local seismic reflection Horizon P2 and regional Reflector Blue, which can be interpreted to mark either the onset of Northern Hemisphere continental glaciation or circulation changes associated with the closure of the Central American Seaway. Sedimentation rates in the pre-glacial lower Pliocene are only about a third those in the glacial upper Pliocene. A prominent disconformity in the upper Miocene marks a major lithologic boundary that separates Messinian(?) glauconitic claystones above from lower Tortonian conglomeratic debris flows and turbidites below. The debris flows recovered are assigned to nannofossil Zones CN8a and CN7, but drilling difficulties prevented penetration of the bottom of this sequence some 100 m below the terminal depth of the hole. Correlation of the lower bounding seismic reflector (M2/Merlin?) to a drift sequence drilled on the lower rise at DSDP Site 603, however, predicts that the debris flows began close to the beginning of the late Miocene (upper Zone CN6 time) at about 10.5 Ma. The debris flows represent a major canyon-cutting event that we correlate with the beginning of the particularly severe late Miocene glaciations believed to be associated with the formation of the West Antarctic Ice Sheet. The existence of these spectacular debris flows strongly suggest that the late Miocene glacio-eustatic low stand occurred during Vail Cycle TM3.1 (lower Tortonian) rather than during Vail Cycle TM3.2 (Messinian) as originally published. Beneath a set of coalesced regional disconformities centered upon seismic reflection Horizon Au, coccoliths are abundant and in general are moderately preserved at Site 605 in a 619-m carbonate section extending from the middle Eocene Zone CP13b to the upper Maestrichtian Lithraphidites quadratus Zone. Sedimentation rates are 37 m/m.y. in the Eocene down to a condensed interval near the base (Zone CP9). A disconformity is suspected near the Eocene/Paleocene boundary. Sedimentation rates for the upper Paleocene Zone CP8 are similar to those of the Eocene, but Zones CP7 and CP6 lie within another condensed interval. The highest Paleocene rates are 67 m/m.y. down through Zones CP5 and CP4 to a major disconformity that separates the upper Paleocene from the Danian. This hiatus spans about 2.6 m.y. (upper Zone CP3 to lower Zone CP2) and corresponds to the major sea-level drop at the base of Vail Cycle TE2.1. As the most prominent break in this Paleogene section, it may correspond to seismic reflection Horizon A* of the North American Basin. Sedimentation rates from this point to the Cretaceous/Tertiary boundary drop to 11 m/m.y., still high for a Paleocene DSDP section. No major break in deposition could be detected at the Cretaceous/Tertiary boundary.
Resumo:
Processes of sedimentation in marine basins locating in the area of interaction of the largest continental plates (African and Eurasian) are under consideration in the book. During the giant tectonic reconstruction of the Tethys Ocean semi-enclosed seas - the Mediterranean and Black originated. Their sedimentary sequence contains a recording of complex history of the Alpine-Himalayan belt. The dramatic history of the seas and their feeding catchments during Cenozoic is described in detail on the base of unique material of coring and deep-sea drilling, as well as a variety of geophysical and geochemical studies. Particular attention is paid to the history of volcanism - terrestrial and underwater - with correlation of ash falls accumulated on the land and in marine sediments.
Resumo:
A total of 35 calcareous nannofossil datums were found in the Neogene sediments recovered at five sites (Sites 803-807) on the Ontong Java Plateau in the equatorial Pacific during Ocean Drilling Program Leg 130. Among them, 12 datums in the Pleistocene-upper Pliocene sequences were correlated with magnetostratigraphy. Pliocene and Miocene calcareous nannofossil assemblages in 289 samples obtained from Holes 804C, 805B, 805C, and 806B were studied. Reticulofenestra coccolith size distribution patterns in these Pliocene-Miocene sediments were also revealed through the present investigation.
Resumo:
Diverse, warm-water planktonic foraminiferal faunas prevailed on the Wombat and Exmouth plateaus during the Neogene, in spite of the northward drift of Australia across 10° to 15° latitude since the early Miocene. Invasions of cool-water species occurred during periods of global cooling in the late middle Miocene, late Miocene, and Pleistocene, and reflect periods of increased northward transport of cool surface water, probably via the West Australian Current. The sedimentary record of the Neogene on Wombat and Exmouth Plateau is interrupted by two hiatuses (lower Miocene, Zone N5, and upper middle to upper Miocene, Zones N15-N17), and one redeposited section of upper Miocene to uppermost Pliocene sediments. Mechanical erosion or nondeposition by increased deep-water flow or tilting and uplift of Wombat and Exmouth plateaus, resulting in sediment shedding, are the most likely explanations for these Miocene hiatuses, but which of these processes were actually operative on the Wombat and Exmouth plateaus is uncertain. The redeposited section of upper Miocene to uppermost Pliocene sediments in Hole 761B, however, certainly reflects a latest Pliocene period of uplift and tilting of the Wombat Plateau. An important finding was the occurrence of Zone N15-correlative sediments in Hole 762B without any representative of Neogloboquadrina. Similar findings in Java and Jamaica indicate that the earliest spreading of Neogloboquadrina acostaensis in the tropical region resulted from migration. The evolution of this species, therefore, must have taken place in higher latitudes. I suggest that Neogloboquadrina acostaensis evolved from Neogloboquadrina atlantica in the North Atlantic within Zone NN9, but how and where in the region this speciation took place is still uncertain
Resumo:
The Neogene sediments from DSDP site 341 on the Voring Plateau, Norwegian Sea, contain a thin glauconitic pellet-bearing subunit, which separates underlying pelagic clays from overlying glacial-marine sediments. Oxygen isotope measurements of benthic foraminifera show a delta18O shift of + 1? during deposition of this subunit, probably a combined effect of a drop in bottom water temperature and a rise in seawater delta18O. The chronology of this sedimentological and O isotope transition is, however, poorly constrained by fossil evidence. Rb-Sr dating of glauconitic pellets indicates that the lower part of the glauconitic subunit was deposited 11.6 +/- 0.2 Ma ago. Further geochronological evidence, derived from the Sr and C isotopic compositions of foraminifera compared with known seawater-time variations, indicates that the lower pelagic clays are early to middle Miocene, deposited at a mean rate of ~15 m/Ma. The glauconitic subunit contains part of the middle Miocene and probably all of the late Miocene in a condensed sequence with a very low mean depositional rate (~0.2 m/Ma). The overlying glacial marine sediments are probably Pliocene, with a high mean rate of deposition, ~45 m/Ma. This is the first application of C, O and Sr isotopic stratigraphy combined with Rb-Sr dating of glauconitic minerals, and it illustrates the applications of this integrated approach in geochronology.
Resumo:
Upper abyssal to lower bathyal benthic foraminifers from ODP Sites 689 (present water depth 2080 m) and 690 (present water depth 2941 m) on Maud Rise (eastern Weddell Sea, Antarctica) are reliable indicators of Maestrichtian through Neogene changes in the deep-water characteristics at high southern latitudes. Benthic foraminiferal faunas were divided into eight assemblages, with periods of faunal change at the early/late Maestrichtian boundary (69 Ma), at the early/late Paleocene boundary (62 Ma), in the latest Paleocene (57.5 Ma), in the middle early Eocene to late early Eocene (55-52 Ma), in the middle middle Eocene (46 Ma), in the late Eocene (38.5 Ma), and in the middle-late Miocene (14.9-11.5 Ma). These periods of faunal change may have occurred worldwide at the same time, although specific first and last appearances of deep-sea benthic foraminifers are commonly diachronous. There were minor faunal changes at the Cretaceous/Tertiary boundary (less than 14?7o of the species had last appearances at Site 689, less than 9% at Site 690). The most abrupt benthic foraminiferal faunal event occurred in the latest Paleocene, when the diversity dropped by 50% (more than 35% of species had last appearances) over a period of less than 25,000 years; after the extinction the diversity remained low for about 350,000 years. The highest diversities of the post-Paleocene occurred during the middle Eocene; from that time on the diversity decreased steadily at both sites. Data on faunal composition (percentage of infaunal versus epifaunal species) suggest that the waters bathing Maud Rise were well ventilated during the Maestrichtian through early Paleocene as well as during the latest Eocene through Recent. The waters appeared to be less well ventilated during the late Paleocene as well as the late middle through early late Eocene, with the least degree of ventilation during the latest Paleocene through early Eocene. The globally recognized extinction of deep-sea benthic foraminifers in the latest Paleocene may have been caused by a change in formational processes of the deep to intermediate waters of the oceans: from formation of deep waters by sinking at high latitudes to formation of deep to intermediate water of the oceans by evaporation at low latitudes. Benthic foraminiferal data (supported by carbon and oxygen isotopic data) suggest that there was a short period of intense formation of warm, salty deep water at the end of the Paleocene (with a duration of about 0.35 m.y.), and that less intense, even shorter episodes might have occurred during the late Paleocene and early Eocene. The faunal record from the Maud Rise sites agrees with published faunal and isotopic records, suggesting cooling of deep to intermediate waters in the middle through late Eocene.
Resumo:
Numerous and variable silty-sandy siliciclastic turbidites were observed in Neogene pelagic sediments (late Miocene to Holocene) at Site 657: (1) thick-bedded, coarse-grained and thin-bedded, fine-grained turbidites; and (2) turbidites composed of eolian dune sand and shallow-water bioclasts or of fluvial-sand or mixed sandy component assemblages. The stratigraphic distribution of these turbidites indicates five periods during which climatic conditions and material sources change. Turbidite occurrence prior to 6.2 Ma (late Miocene) is sparse; the deposits contain coarse and fine-grained turbidites with quartz grains of eolian or mixed origin suggesting the existence of arid conditions at about 8.5 and 6.5 Ma. A coarse-grained turbidite of fluvial origin, recording a humid climate, occurs at about 6.2 Ma. During the early Pliocene, turbidites are frequent (15/Ma); they contain only fine-grained sequences comprising material of mixed origin, which indicates a more humid climate perhaps. The late Pliocene starts with rare coarse-grained turbidites of wind-transported sand while the uppermost Pliocene deposits show a higher frequency of fine-grained sequences (10/0.7 Ma) composed mainly of fluvial material. During the early Pleistocene, similar high turbidite frequency was observed (20/1.3 Ma) but with a total lack of eolian supply. During the last 0.7 Ma, the frequency decreases and the sequences are characterized by highly variable sediment components that could be related to strong variations of climatic conditions. The sedimentary characteristics of turbidites are mainly controlled by sediment source and climate. The frequency must be influenced by sea-level variations, by cyclic processes of climatic origin, and possibly by variations in the continental slope morphology. Clay mineral assemblages suggest a south Saharan source of terrigenous material during the late Miocene and the Pliocene and a northwest Saharan source during the Pleistocene.
Resumo:
During Leg 41 Neogene sediments were recovered from five sites off northwest Africa. On the Sierra Leone Rise (Site 366), Neogene sediments consist of nanno oozes, nanno chalk, and calcareous clays 230 meters thick, resting conformably on the late Oligocene sediments. The common succession of zones occurs with two hiatuses. The lower gap corresponds to an interval around the lower/middle Miocene boundary (the Praeorbulina glomerosa and Orbulina suturalis-Globorotalia peri-pheroronda zones are absent) and the upper gap coincides with an interval around the middle/upper Miocene boundary (the Sphaeroidinellopsis sub-dehiscens-GIobigerina druryi, Globigerina nepenthes-Globorotalia siakensis and Globorotalia conlinuosa zones are missing). In the Cape Verde Basin (Site 367) deep-water Neogene turbidites (about 200-250 m thick) contain poor fauna of redeposited and sorted Cretaceous, Eocene, Oligocene, and Neogene species. On the Cape Verde Rise (Site 368) the Neogene section starts with slightly calcareous and non-calcareous clays with poor planktonic foraminifers of the lower Miocene. Later on this area was uplifted and clayey sediments have been replaced upsection in order by more shallow-water clayey nanno and nanno-foraminifer oozes and marls and pure calcareous oozes. In the middle Miocene, planktonic foraminifers are still not diverse, but since the level of the Globigerina nepenthes-Globorotalia siakensis Zone, almost all Neogene zones have been traced. The minimum thickness of the Neogene sediments is about 230 meters. On the continental slope off Spanish Sahara (Site 369) monotonous calcareous pelagic sediments of Neogene age (164 m thick) overlie the late Oligocene comformably, or with a small time gap. A set of zones beginning from the Globigerinoides primordis-Globorotaiia kugleri Zone up to the Globorotalia fohsi fohsi Zone has been revealed with a gap corresponding to the Globigerinita stainforthi and the Globigerinatella insueta-Globigerinoides irilobus zones. Above that follow sediments with heterogeneous microfauna which result from redeposition or mixing of sediments during drilling. The section ends with sediments of the late Miocene and lower Pliocene with abundant planktonic foraminifers. The latter are unconformably overlain by the Quaternary ooze. In the Morocco basin (Site 370) deep-water marls and calcareous clays of the lower Miocene contain poor assemblages of planktonic foraminifers. The middle and upper Miocene are represented by turbidites (alternation of nanno oozes, clays, siltstones, and sands) with heterogeneous microfauna. Total thickness of Neogene is up to 200 meters. In general the Neogene foraminifer microfauna of the area studied includes the majority of species which developed within the tropical-subtropical belt. The entire succession of the Miocene and Pliocene foraminifer zones occurs. The only exclusion is the Sphaeroidinellopsis subdehiscens-Globigerina druryi Zone of the middle Miocene. The distribution of species is shown on three tables. Comments are given for 47 species and subspecies of foraminifers (stratigraphic ranges, peculiarities of morphology, and ultrastructure of the shell wall).
Resumo:
Sponge spicules found in Eocene, Oligocene, and middle Miocene sediments at DSDP Leg 71 Sites 511,512, and 513 belong to two classes; Hyalospongiae and Demospongiae. On the basis of spicule types and stratigraphic characteristics, spicule assemblages are distinguished for the lower and upper units of the middle Eocene, the upper Eocene, the lower Oligocene, the lower and upper units of the upper Oligocene, and the middle Miocene. In addition, 23 types and 76 dimensional varieties of spicules are described.