926 resultados para Negatively invariant sets
Resumo:
The behavior of plane fountains, resulting from the injection of dense fluid (water) upwards into a large container of homogeneous fluid of lower density (air),was investigated. In this study the behavior of fountains was examined numerically and experimentally for different Froude and Reynolds numbers. The flow rate and nozzle diameter of the inlet of the fountain was varied to cover a wide range of Reynolds and Froude numbers. The effect of inclination angle of the inlet for different nozzle diameter and flow rate on fountain behavior was observed. It was found that the height of the fountain greatly depends on Froude number. An empirical correlation was developed for non-dimensional fountain height with Froude number. However the non-dimensional fountain height can more accurately be represented when regressed with both Reynolds and Froude number by the following relationship H/r=exp(5.94)*Re^-0.72*Fr^2.26. The result are compared with previous numerical and experimental results and found to be consistent.
Resumo:
Big data is big news in almost every sector including crisis communication. However, not everyone has access to big data and even if we have access to big data, we often do not have necessary tools to analyze and cross reference such a large data set. Therefore this paper looks at patterns in small data sets that we have ability to collect with our current tools to understand if we can find actionable information from what we already have. We have analyzed 164390 tweets collected during 2011 earthquake to find out what type of location specific information people mention in their tweet and when do they talk about that. Based on our analysis we find that even a small data set that has far less data than a big data set can be useful to find priority disaster specific areas quickly.
Resumo:
Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.
Resumo:
Automated crowd counting has become an active field of computer vision research in recent years. Existing approaches are scene-specific, as they are designed to operate in the single camera viewpoint that was used to train the system. Real world camera networks often span multiple viewpoints within a facility, including many regions of overlap. This paper proposes a novel scene invariant crowd counting algorithm that is designed to operate across multiple cameras. The approach uses camera calibration to normalise features between viewpoints and to compensate for regions of overlap. This compensation is performed by constructing an 'overlap map' which provides a measure of how much an object at one location is visible within other viewpoints. An investigation into the suitability of various feature types and regression models for scene invariant crowd counting is also conducted. The features investigated include object size, shape, edges and keypoints. The regression models evaluated include neural networks, K-nearest neighbours, linear and Gaussian process regresion. Our experiments demonstrate that accurate crowd counting was achieved across seven benchmark datasets, with optimal performance observed when all features were used and when Gaussian process regression was used. The combination of scene invariance and multi camera crowd counting is evaluated by training the system on footage obtained from the QUT camera network and testing it on three cameras from the PETS 2009 database. Highly accurate crowd counting was observed with a mean relative error of less than 10%. Our approach enables a pre-trained system to be deployed on a new environment without any additional training, bringing the field one step closer toward a 'plug and play' system.
Resumo:
This paper evaluates the efficiency of a number of popular corpus-based distributional models in performing discovery on very large document sets, including online collections. Literature-based discovery is the process of identifying previously unknown connections from text, often published literature, that could lead to the development of new techniques or technologies. Literature-based discovery has attracted growing research interest ever since Swanson's serendipitous discovery of the therapeutic effects of fish oil on Raynaud's disease in 1986. The successful application of distributional models in automating the identification of indirect associations underpinning literature-based discovery has been heavily demonstrated in the medical domain. However, we wish to investigate the computational complexity of distributional models for literature-based discovery on much larger document collections, as they may provide computationally tractable solutions to tasks including, predicting future disruptive innovations. In this paper we perform a computational complexity analysis on four successful corpus-based distributional models to evaluate their fit for such tasks. Our results indicate that corpus-based distributional models that store their representations in fixed dimensions provide superior efficiency on literature-based discovery tasks.
Resumo:
In this paper we present a novel place recognition algorithm inspired by recent discoveries in human visual neuroscience. The algorithm combines intolerant but fast low resolution whole image matching with highly tolerant, sub-image patch matching processes. The approach does not require prior training and works on single images (although we use a cohort normalization score to exploit temporal frame information), alleviating the need for either a velocity signal or image sequence, differentiating it from current state of the art methods. We demonstrate the algorithm on the challenging Alderley sunny day – rainy night dataset, which has only been previously solved by integrating over 320 frame long image sequences. The system is able to achieve 21.24% recall at 100% precision, matching drastically different day and night-time images of places while successfully rejecting match hypotheses between highly aliased images of different places. The results provide a new benchmark for single image, condition-invariant place recognition.
Resumo:
In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.
Resumo:
Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.
Resumo:
Both the integrin and insulin-like growth factor binding protein (IGFBP) families independently play important roles in modulating tumor cell growth and progression. We present evidence for a specific cell surface localization and a bimolecular interaction between the αvβ3 integrin and IGFBP-2. The interaction, which could be specifically perturbed using vitronectin and αvβ3 blocking antibodies, was shown to modulate IGF-mediated cellular migration responses. Moreover, this interaction was observed in vivo and correlated with reduced tumor size of the human breast cancer cells, MCF-7β3, which overexpressed the αvβ3 integrin. Collectively, these results indicate that αvβ3 and IGFBP-2 act cooperatively in a negative regulatory manner to reduce tumor growth and the migratory potential of breast cancer cells.
Resumo:
Mapping of protein signaling networks within tumors can identify new targets for therapy and provide a means to stratify patients for individualized therapy. Despite advances in combination chemotherapy, the overall survival for childhood rhabdomyosarcoma remains ∼60%. A critical goal is to identify functionally important protein signaling defects associated with treatment failure for the 40% nonresponder cohort. Here, we show, by phosphoproteomic network analysis of microdissected tumor cells, that interlinked components of the Akt/mammalian target of rapamycin (mTOR) pathway exhibited increased levels of phosphorylation for tumors of patients with short-term survival. Specimens (n = 59) were obtained from the Children's Oncology Group Intergroup Rhabdomyosarcoma Study (IRS) IV, D9502 and D9803, with 12-year follow-up. High phosphorylation levels were associated with poor overall and poor disease-free survival: Akt Ser473 (overall survival P < 0.001, recurrence-free survival P < 0.0009), 4EBP1 Thr37/46 (overall survival P < 0.0110, recurrence-free survival P < 0.0106), eIF4G Ser1108 (overall survival P < 0.0017, recurrence-free survival P < 0.0072), and p70S6 Thr389 (overall survival P < 0.0085, recurrence-free survival P < 0.0296). Moreover, the findings support an altered interrelationship between the insulin receptor substrate (IRS-1) and Akt/mTOR pathway proteins (P < 0.0027) for tumors from patients with poor survival. The functional significance of this pathway was tested using CCI-779 in a mouse xenograft model. CCI-779 suppressed phosphorylation of mTOR downstream proteins and greatly reduced the growth of two different rhabdomyosarcoma (RD embryonal P = 0.00008; Rh30 alveolar P = 0.0002) cell lines compared with controls. These results suggest that phosphoprotein mapping of the Akt/mTOR pathway should be studied further as a means to select patients to receive mTOR/IRS pathway inhibitors before administration of chemotherapy.
Resumo:
Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces. The ABC algorithm proposed here addresses model choice problems by extending Fearnhead and Prangle (2012, Journal of the Royal Statistical Society, Series B 74, 1–28) where the posterior mean of the model parameters estimated through regression formed the summary statistics used in the discrepancy measure. An additional stepwise multinomial logistic regression is performed on the model indicator variable in the regression step and the estimated model probabilities are incorporated into the set of summary statistics for model choice purposes. A reversible jump Markov chain Monte Carlo step is also included in the algorithm to increase model diversity for thorough exploration of the model space. This algorithm was applied to a validating example to demonstrate the robustness of the algorithm across a wide range of true model probabilities. Its subsequent use in three pathogen transmission examples of varying complexity illustrates the utility of the algorithm in inferring preference of particular transmission models for the pathogens.
Resumo:
In this paper we propose the hybrid use of illuminant invariant and RGB images to perform image classification of urban scenes despite challenging variation in lighting conditions. Coping with lighting change (and the shadows thereby invoked) is a non-negotiable requirement for long term autonomy using vision. One aspect of this is the ability to reliably classify scene components in the presence of marked and often sudden changes in lighting. This is the focus of this paper. Posed with the task of classifying all parts in a scene from a full colour image, we propose that lighting invariant transforms can reduce the variability of the scene, resulting in a more reliable classification. We leverage the ideas of “data transfer” for classification, beginning with full colour images for obtaining candidate scene-level matches using global image descriptors. This is commonly followed by superpixellevel matching with local features. However, we show that if the RGB images are subjected to an illuminant invariant transform before computing the superpixel-level features, classification is significantly more robust to scene illumination effects. The approach is evaluated using three datasets. The first being our own dataset and the second being the KITTI dataset using manually generated ground truth for quantitative analysis. We qualitatively evaluate the method on a third custom dataset over a 750m trajectory.
Resumo:
During the last decade 'prostitution' has been characterised as a 'social problem' throughout rural and regional New South Wales. As we show here, the urban-centric nature of popular and official discourses of prostitution have inadvertently allowed for the development of regulatory positions which have negatively impacted sex workers in rural and regional communities and lead to conflict among sectors of the rural sex industry and between the sex industry and community activists. In addition to examining the problematisation of sex work in rural New South Wales, this paper sets out to understand why rural sex work has historically lacked visibility in popular and scholarly discourses. We provide an overview of the distinctive organisational aspects of the sex industry in rural contexts. Evidence for our assertions is largely derived from primary interview data collected from sex industry workers based in rural New South Wales. The paper represents the first attempt in the research literature on prostitution to understand sex work as a rural phenomenon.
Resumo:
Vision-based place recognition involves recognising familiar places despite changes in environmental conditions or camera viewpoint (pose). Existing training-free methods exhibit excellent invariance to either of these challenges, but not both simultaneously. In this paper, we present a technique for condition-invariant place recognition across large lateral platform pose variance for vehicles or robots travelling along routes. Our approach combines sideways facing cameras with a new multi-scale image comparison technique that generates synthetic views for input into the condition-invariant Sequence Matching Across Route Traversals (SMART) algorithm. We evaluate the system’s performance on multi-lane roads in two different environments across day-night cycles. In the extreme case of day-night place recognition across the entire width of a four-lane-plus-median-strip highway, we demonstrate performance of up to 44% recall at 100% precision, where current state-of-the-art fails.