997 resultados para Nd-YAG laser
Resumo:
Onicomicose é a doença ungueal mais frequente, com prevalência estimada entre 2 e 8% da população. As estratégias de tratamentos atuais incluem uso de antifúngicos tópicos e orais, ambos geralmente com baixos índices de cura. Os objetivos deste estudo foram avaliar a resposta terapêutica ao laser Nd:YAG 1.064 nm no tratamento da onicomicose, bem como o método de avaliação clínica dessa terapia e os possíveis efeitos colaterais de seu uso. Foram revisados prontuários de 20 pacientes submetidos à laserterapia. Ao todo, 34 unhas afetadas foram avaliadas de acordo com o Índice de Severidade de Onicomicose (ISO). Esse índice analisa a área de envolvimento da unha, a proximidade da doença com a matriz ungueal, a ocorrência de dermatofitoma e a presença de hiperqueratose subungueal > 2 mm, gerando uma pontuação que classifica a onicomicose como leve, moderada ou grave. A determinação do ISO foi realizada antes do tratamento e após um período de acompanhamento, em média, de oito meses. A comparação entre o ISO Inicial e o ISO Final nas 34 unhas submetidas à laserterapia mostrou diferença significativa, porém, com baixa associação entre essas variáveis. Com relação à área de envolvimento e à pontuação numérica referente ao ISO, houve, no geral, uma redução dessas medidas. Esses dados apontam para uma tendência à melhora da onicomicose por meio do tratamento com o laser Nd:YAG 1.064 nm. O ISO permitiu uma análise clínica adequada da resposta à laserterapia. Os efeitos colaterais locais apresentados durante a aplicação do laser não causaram desconforto acentuado na maioria dos pacientes, demonstrando que o procedimento é bem tolerado.
Resumo:
In this work, surface modification of the Ti-6Al-4V alloy by irradiation with a Nd:YAG laser beam was studied. The matrix spacing was varied and the other parameters were kept constant. After theirradiation, the samples were immersed into SBF solution (Simulated Body Fluid) for 7 days at 37 ° C for nucleation and formation of calcium phosphates. After this period, the samples were subjected to a heat treatment at 600 °C. X-ray diffraction results indicated the formation of a mixture of phases containing hydroxyapatite and tricalcium phosphate. Infrared analysis demonstrated the presence of bands related to hydroxyapatite. SEM micrographs showed that different matrix spacing used leads to the formation of different morphologies.The 0.01 cm spacing induced the formation of microspheres, characteristic of the hydroxyapatite phase, while for 0.02 cm spacing, only a non-homogeneous coating was obtained. Therefore, the use of laser in the production of active surfaces for deposition of bioceramics proved to be viable, and the final coating has potential for applications in the field of dental implants.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Neste trabalho investigou-se a modificação de superfície do titânio pela irradiação com feixe de Laser Nd:YAG. Os parâmetros do laser como a potência, o comprimento de onda, a frequência, a velocidade de varredura e a área de exposição foram mantidos constantes, exceto o espaçamento da matriz, o qual foi de 0,01 e 0,02 mm. A caracterização da superfície foi realizada por Microscopia Eletrônica de Varredura (MEV) e Difração de Raios X (DRX), sendo que os espectros foram refinados pelo método Rietveld. Pela análise de MEV, observou-se uma mudança na topografia, obtendo uma superfície rugosa produzida pelo fenômeno de ablação. As análises por Rietveld dos espectros de difração de raios X detectaram TiN, Ti2N, TiO2 (anatásio e rutilo), sendo que a amostra com espaçamento 0,01 mm apresentou uma maior quantidade de óxidos e nitretos. Isso pode ser devido à sobreposição do feixe, induzindo à formação de uma superfície com maior estabilidade termodinâmica. Os óxidos e nitretos obtidos são de grande importância, pois são responsáveis por produzir uma maior interação entre o osso-implante.
Resumo:
This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.
Resumo:
Objective: This in vitro study evaluated the influence of the surface pretreatment of a feldspathic ceramic on the shear bond strength of two different resin cements. Background Data: Although several conventional surface treatments have been used on feldspathic ceramic, few studies have investigated the effects of an alternative surface treatment, the association of aluminum oxide sandblasting with Nd:YAG and Er:YAG lasers. Methods: Sixty samples made of a feldspathic ceramic were divided into three groups (n = 20) and treated with (1) controlled-air abrasion with Al(2)O(3) + 10% hydrofluoric acid (HF), (2) Al(2)O(3) + Er:YAG laser, and (3) Al(2)O(3) + Nd:YAG laser. Afterward, silane (Dentsply) was applied on each treated surface. Each of the three main groups was divided into two subgroups (n = 10), where a different resin cement was employed for each subgroup. It was built a cylinder with resin cement (RelyX Arc) in subgroup (A) and with self-adhesive cement (RelyX U100) in subgroup (B). After 24 h at 37 degrees C, the prepared specimens were submitted to shear bond strength test and stereoscopic evaluation to determine the type of failure. Results: Bond strength mean values were not statistically significant for the surface treatment methods or resin cements. Conclusion: The null surface treatment proposed with aluminum oxide sandblasting associated with the Er:YAG or Nd:YAG laser and using cementation with self-adhesive cement can be an alternative bonding technique for feldspathic ceramic, since it was as effective as the conventional treatment with aluminum oxide sandblasting and hydrofluoric acid using the conventional resin cement.
Resumo:
Objective: In this paper we evaluated the effect of two fluoridated agents and Nd:YAG irradiation separately and in combination on dentine resistance to erosion. Background Data: The morphological changes in dentin induced by laser treatment may reduce the progression of erosive lesions. Due to the possibility of a synergistic effect of laser with fluoride, this study was conducted. Materials and Methods: Eighty bovine dentine samples (4 x 4 mm) were randomly divided into eight groups, according to the following treatments: G1: untreated (control); G2: acidic phosphate fluoride gel (APF 1.23%) for 4 min; G3: fluoride varnish (NaF 2.26%) for 6 h; G4: 0.5 W Nd: YAG laser (250 mu sec pulse, 10 Hz, 35 J/cm(2), 30 sec); G5: 0.75 W Nd: YAG laser (52.5 J/cm(2)); G6: 1.0 W Nd: YAG laser (70 J/cm(2)); G7: APF + 0.75 W Nd: YAG laser; and G8: NaF + 0.75 W Nd: YAG laser. After the treatments, half of each dentine surface was protected with nail varnish. The samples were stored in artificial saliva (30 mL/sample) for 24 h and submitted to four erosive 1-min cycles. Between the erosive attacks, the blocks were maintained in artificial saliva for 59 min. The erosive wear was evaluated by profilometry. Results: The mean wear (+/- SD, mu m) was: G1: 1.20 +/- 0.20; G2: 0.47 +/- 0.06; G3: 0.81 +/- 0.11; G4: 1.47 +/- 0.32; G5: 1.52 +/- 0.24; G6: 1.49 +/- 0.30; G7: 0.49 +/- 0.11; and G8: 1.06 +/- 0.31 (Tukey's test, p < 0.05). Conclusions: Laser irradiation was not able to reduce dentine erosion. However, fluoride application was able to increase the dentine's resistance to erosion, and APF showed better results than fluoride varnish.
Resumo:
The aim of this study was to compare the effects of Nd:YAG, Er:YAG, and diode lasers on the morphology and permeability of root canal walls. The three laser wavelengths mentioned interact differently with dentin and therefore it is possible that the permeability changes caused will determine different indications during endodontic treatment. Twenty-eight human single-rooted teeth were instrumented up to ISO 40 and divided into four groups: group C, control (GC), non-laser irradiated; group N (GN), irradiated with Nd:YAG laser; group E (GE), with Er:YAG laser and group D (GD) with diode laser. After that, the roots were filled with a 2% methylene blue dye, divided into two halves and then photographed. The images were analyzed using Image J software and the percentage of dye penetration in the cervical, middle, and apical root thirds were calculated. Additional scanning electron microscopy (SEM) analyses were also performed. The analysis of variance (ANOVA) showed significant permeability differences between all groups in the middle and cervical thirds (p < 0.05). The Tukey test showed that in the cervical third, GN presented means of dye penetration statistically significantly lower than all of the other groups. In the middle third, GE and GD showed statistically higher dye penetration means than GC and GN. SEM analysis showed melted surfaces for GN, clean wall surfaces with open dentinal tubules for GE, and mostly obliterated dentinal tubules for GD. Er:YAG (2,094 nm) laser and diode laser (808 nm) root canal irradiation increase dentinal permeability and Nd:YAG (1,064 nm) laser decreases dentin permeability, within the studied parameters.