814 resultados para Nanophase Materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of heavy-duty printer heads involves a great deal of grinding work. Previously in the printer manufacturing industry, four grinding procedures were manually conducted in four grinding machines, respectively. The productivity of the whole grinding process was low due to the long loading time. Also, the machine floor space occupation was large because of the four separate grinding machines. The manual operation also caused inconsistent quality. This paper reports the system and process development of a highly integrated and automated high-speed grinding system for printer heads. The developed system, which is believed to be the first of its kind, not only produces printer heads of consistently good quality, but also significantly reduces the cycle time and machine floor space occupation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled materials consisting of V(2)O(5), polyallylamine (PAR) and silver nanoparticles (AgNPs) were obtained by the layer-by-layer (LbL) method, aiming at their application as electrodes for lithium-ion batteries and electrochromic devices. The method employed herein allowed for linear growth of visually homogeneous films composed of V(2)O(5), V(2)O(5)/PAH, and V(2)O(5)/PAH/AgNP with 15 bilayers. According to the Fourier transform infrared spectra, interaction between the oxygen atom of the vanadyl group and the amino group should be responsible for the growth of these films. This interaction also enabled establishment of an electrostatic shield between the lithium ions and the sites with higher negative charge, thereby raising the ionic mobility and consequently increasing the energy storage capacity and reducing the response time. According to the site-saturation model and the electrochemical and spectroelectrochemical results, the presence of PAH in the self-assembled host matrix decreased the number of V(2)O(5) electroactive sites. Thus, AgNPs were stabilized in PAR and inserted into the nanoarchitecture, so as to enhance the specific capacity. This should provide new conducting pathways and connect isolated V(2)O(5) particles in the host matrix. Therefore, new nanoarchitectures for specific interactions were formed spontaneously and chosen as examples in this work, aiming to demonstrate the potentiality of the adopted self-assembled method for enhancing the charge transport rate into the host matrices. The obtained materials displayed suitable properties for use as electrodes in lithium batteries and electrochromic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite materials have received considerable attention in recent years due to their novel properties. Grain boundaries are considered to play an important role in nanostructured materials. This work focuses on the finite element analysis of the effect of grain boundaries on the overall mechanical properties of aluminium/alumina composites. A grain boundary is incorporated into the commonly used unit cell model to investigate its effect on material properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the ''effective'' plastic property of the grain boundary is estimated. In addition, the strengthening mechanism is also discussed based on the Estrin-Mecking model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This in vitro study compared the effects of a gold alloy (Degulor M), four dental ceramics (IPS Empress, IPS Empress 2, Duceram Plus, Duceram. LFC) and a laboratory-processed composite (Targis) on the wear of human enamel. The amount of wear of the enamel (dental cusps) and restorative materials (disks) were tested in water at 37 degrees C under standard load (20 N), with a chewing rate of 1.3 Hz and was determined after 150,000 and 300,000 cycles. Before the test, the average surface roughness of the restorative materials was analyzed using the Ra parameter. The results of this study indicate that Targis caused enamel wear similar to Degulor M and resulted in significantly less wear than all the ceramics tested. IPS Empress provoked the greatest amount of enamel wear and Degulor M caused less vertical dimension loss. Targis could be an appropriate alternative material to ceramic, because it is esthetic and produces opposing enamel wear comparable to gold alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This in vitro study evaluated the effect of erosive pH cycling on the percentage of surface micro-hardness change (%SMHC) and wear of different restorative materials and bovine enamel restored with these materials. Eighty enamel specimens were randomly divided into eight groups according to the restorative materials and immersion media used: GI/GV-resin-modifled glass-ionomer, GII/GVI-conventional glass-ionomer, GIII/GVII-resin composite and GIV/GVIII-amalgam. Over a period of seven days, groups GI to GIV were immersed in a cola drink (ERO) for 5 minutes, 3x/day and kept in artificial saliva between erosive cycles. Groups GV to GVIII were immersed in artificial saliva (SAL) throughout the entire experimental period (control). Data were tested for significant differences using ANOVA and Tukey`s tests (p < 0.05). For %SMHC, considering the restorative materials, no significant differences were detected among the materials and immersion media. Mean wear was higher for the resin modified glass ionomer cement when compared to conventional cement, but those materials did not significantly differ from the others. For enamel analyses, erosive pH cycling promoted higher wear and %SMHC compared to saliva. There were no significant differences in wear and %SMHC of enamel around the different restorative materials, regardless of the distance from the restorative material (50, 150 or 300 mu m). In conclusion, there were only subtle differences among the materials, and these differences were not able to protect the surrounding enamel from erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The aim of this study was to compare GPX instruments and hand files for gutta-percha removal. Study design. Fifty maxillary central incisors with a single straight canal were instrumented and filled. The teeth were divided into 5 groups of 10 specimens each, according to the gutta-percha removal techniques: group 1: GPX (21-mm-long teeth); group 2: GPX and xylol as solvent (21-mm-long teeth); group 3: GPX (25-mm-long teeth); group 4: GPX and xylol as solvent (25-mm-long teeth); and group 5: hand files and xylol as solvent. The amount of time for gutta-percha removal and the number of fractured instruments were evaluated. Radiographs were taken, and the teeth were grooved longitudinally and split. The area of residual debris was measured using Sigma Scan software. Results. The time for filling material removal was significantly shorter when GPX was used (P < .05). Overall, hand files and solvent produced fewer remnants of filling materials (P < .05). In the GPX 25 mm-long teeth group, the filling material was not removed in the apical third. Conclusions. Under the experimental conditions, the GPX instruments proved to be faster than hand instruments in removing root filling materials; however, hand instruments left a smaller amount of residual filling materials on the canal walls. The GPX instruments did not pull the gutta-percha beyond its tip. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 675-680)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the pH, calcium release, setting time, and solubility of two commercially available mineral trioxide aggregate (MTA) cements (white MTA Angelus and MTA Bio), and of three experimental cements (light-cured MTA, Portland cement with 20% bismuth oxide and 5% calcium sulfate, and an epoxy resin-based cement). Study design. For evaluation of pH and calcium ion release, polyethylene tubes with 1.0 mm internal diameter and 10.0 mm length were filled with the cements and immediately immersed in flasks containing 10 mL deionized water. After 3, 24, 72, and 168 hours, the tubes were removed and the water from the previous container was measured for its pH and calcium content with a pH meter and an atomic absorption spectrophotometer. For analysis of the setting time, Gilmore needles weighing 100 g and 456.5 g were used, in accordance with the American Society for Testing and Materials specification no. C266-03. Solubility of each cement was also tested. Results. All the cements were alkaline and released calcium ions, with a declining trend over time. After 3 hours, Portland cement + bismuth oxide and MTA Bio had the highest pH and light-cured MTA the lowest. After 1 week, MTA Bio had the highest pH and light-cured MTA and epoxy resin-based cement the lowest. Regarding calcium ion release, after 3 hours, Portland cement + bismuth oxide showed the highest release. After 1 week, MTA Bio had the highest. Epoxy resin-based cement and light-cured MTA had the lowest calcium release in all evaluation periods. Regarding setting times, white MTA Angelus and MTA Bio had the shortest, Portland cement + bismuth oxide had an intermediate setting time, and the epoxy resin-based cement had the longest. The materials that showed the lowest solubility values were the epoxy resin-based cement, Portland cement + bismuth oxide, and light-cured MTA. The highest solubility values were presented in white MTA Angelus and MTA Bio. Conclusions. The white MTA Angelus and MTA Bio had the shortest setting times, higher pH and calcium ion release, and the highest solubility. In contrast, the epoxy resin-based cement and light-cured MTA showed lower values of solubility, pH, and calcium ion release. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 250-256)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The aim of the present study was to evaluate the radiopacity of 5 root end filling materials (white MTA Angelus, MTA Bio, light-cured MTA, Sealepox RP, and Portland cement clinker with bismuth oxide and calcium sulfate). Method. Five specimens, 10 mm in diameter and 1 mm in thickness according to specification ISO 6876: 2001 were fabricated from each material and radiographed using Insigth occlusal films close to a graduated aluminum step-wedge (2 to 16 mm in thickness). Radiographs were digitized and compared to the aluminum step-wedge. The radiographic density data were converted into millimeters of aluminum (mm Al), using the Digora 1.51 software. Results were evaluated statistically using the analysis of variance (ANOVA) followed by Tukey test. The level of significance was set at 5% (P<.05%). Results. Radiopacity values ranged from 1.21 mm Al (light-cured MTA) to 6.45 mm Al (MTA Angelus). Comparison between materials showed significant difference (P<.05) between MTA Angelus and all other materials, between Sealepox RP and MTA Bio, and between light-cured MTA and Portland cement clinker. Light-cured MTA was significantly less radiopaque than all other materials. No significant difference (P>.05) was found between MTA Bio and Portland cement clinker. Conclusions. All retrograde filling materials evaluated showed greater radiopacity than dentin. All the materials, except light-cured MTA met the minimum radiopacity standards of 3 mm Al recognized by the ISO 6876: 2001 and ADA n.57. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e35-e38)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The aim of this study was to compare Profile .04 taper series 29 instruments and hand files for gutta-percha removal. Study design. Twenty maxillary central incisors with a single straight canal were instrumented and filled. The teeth were divided into 2 groups of 10 specimens each, according to gutta-percha removal techniques: Group 1- Profile series 29 and Group 2- hand files and solvent. The amount of time for gutta-percha removal and the number of fractured instruments were evaluated. Radiographs were taken and the teeth were grooved longitudinally and split. The area of residual debris was measured using computer software. Results. The time for filling material removal was significantly shorter when Profile series 29 was used (P = .00). Regarding cleanliness, there were no statistical differences in the teeth halves evaluations (P = .05). Hand instruments cleaned the canals significantly better than Profiles, in the radiographic analysis considering the whole canal. Overall, the radiographic analysis showed a smaller percentage of residual debris than the teeth halves analysis. Conclusion. The Profile series 29 instruments proved to be faster than hand instruments in removing root filling materials; however, hand instruments yielded better root canal cleanliness. Some residual debris was not visualized by radiographs. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e46-e50)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: To evaluate calcium ion release and pH of Sealer 26 (S26) (Dentsply, Rio de Janeiro, RJ, Brazil), white mineral trioxide aggregate (MTA), Endo CPM Sealer (CPM1) (EGEO SRL Bajo licencia MTM Argentina SA, Buenos Aires, Argentina), Endo CPM Sealer in a thicker consistency (CPM 2), and zinc oxide and eugenol cement (ZOE). Methods: Material samples (n = 10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 3, 6,12,24, and 48 hours and 7,14, and 28 days, the water pH was determined with a pH meter, and calcium release was assessed by atomic absorption spectrophotometry. An empty tube was used as the control group. Results: The control group presented a pH value of 6.9 at all studied periods and did not show the presence of calcium ion. S26 presented greater hydroxyl ion release up to 12 hours (p < 0.05). From 24 hours until 28 days, S26, MTA, CPM1, and CPM2 had similar results. in ail periods, ZOE presented the lowest hydroxyl ion release. CPM1, followed by CPM2, released the most calcium ions until 24 hours (p < 0.05). Between 48 hours and 7 days, CPM1 and CPM2 had the highest release. A greater calcium ion release was observed for CPM2, followed by CPM1 at 14 days and for S26, CPM1, and CPM2 at 28 days. ZOE released the least calcium ions in all periods. Conclusion: Sealer 26, MTA, and Endo CPM sealer at normal or thicker consistency release hydroxyl and calcium ions. Endo CPM sealer may be an alternative as root-end filling material. (J Endod 2009;35:1418-1421)