152 resultados para Nanomedicine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: RALA is a novel 30 mer bioinspired amphipathic peptide that is showing promise for gene delivery. Here, we used RALA to deliver the FK506-binding protein like – FKBPL gene (pFKBPL) – a novel member of the immunophilin protein family. FKBPL is a secreted protein, with overexpression shown to inhibit angiogenesis, tumor growth and stemness, through a variety of intra- and extracellular signaling mechanisms. We also elucidated proangiogenic activity and stemness after utilizing RALA to deliver siRNA (siFKBPL). Materials & methods: The RALA/pFKBPL and RALA/siFKBPL nanoparticles were characterized in terms of size, charge, stability and toxicity. Overexpression and knockdown of FKBPL was assessed in vitro and in vivo. Results: RALA delivered both pFKBPL and siFKBPL with less cytotoxicity than commercially available counterparts. In vivo, RALA/pFKBPL delivery retarded tumor growth, and prolonged survival with an associated decrease in angiogenesis, while RALA/siFKBPL had no effect on tumor growth rate or survival, but resulted in an increase in angiogenesis and stemness. Conclusion: RALA is an effective delivery system for both FKBPL DNA and RNAi and highlights an alternative therapeutic approach to harnessing FKBPL's antiangiogenic and antistemness activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To create a clinically relevant gold nanoparticle (AuNP) treatment, the surface must be functionalized with multiple ligands such as drugs, antifouling agents and targeting moieties. However, attaching several ligands of differing chemistries and lengths, while ensuring they all retain their biological functionality remains a challenge. This review compares the two most widely employed methods of surface co-functionalization, namely mixed monolayers and hetero-bifunctional linkers. While there are numerous in vitro studies successfully utilizing both surface arrangements, there is little consensus regarding their relative merits. Animal and preclinical studies have demonstrated the effectiveness of mixed monolayer functionalization and while some promising in vitro results have been reported for PEG linker capped AuNPs, any potential benefits of the approach are not yet fully understood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grâce aux nanotechnologies, l’être humain peut maîtriser la matière à l’échelle du nanomètre — soit au niveau des atomes et des molécules. Les matériaux obtenus suite à ces manipulations présentent des propriétés nouvelles qui les rendent très intéressants pour nombre d’applications techniques, et ce dans tous les domaines technoscientifiques. Ainsi, les nanotechnologies sont souvent considérées comme les prémisses d’une profonde révolution technologique et sociale. Toutefois, si les nanotechnologies intéressent investisseurs, gouvernement, entreprises et universités, elles soulèvent aussi des questions éthiques, notamment au sujet de leur toxicité, de leurs retombées et de la modification de l’être humain. À ces questions s’ajoutent plusieurs interrogations sur la gouvernance des nanotechnologies : comment, en effet, encadrer en amont le développement de celles-ci pour éviter d’éventuelles conséquences néfastes en aval? Parmi ces interrogations, le rôle des médias dans les relations entre les développeurs de nanotechnologies et le public est souvent mentionné. Certains voient dans les médias un acteur auquel les chercheurs pourraient recourir pour établir un dialogue avec le public afin d’assurer un développement harmonieux des nanotechnologies. Si cette recommandation semble très pertinente, il n’existe, à notre connaissance, aucune étude empirique pour en vérifier la faisabilité auprès des acteurs concernés (chercheurs, médias, etc.). Dans le cadre de cette thèse, nous avons donc voulu examiner et analyser les perceptions des chercheurs et des journalistes québécois envers des initiatives médiatiques pour baliser le développement des nanotechnologies. Pour ce faire, nous avons procédé à une étude qualitative auprès de vingt (20) chercheurs en nanobiotechnologies/nanomédecine et dix (10) journalistes spécialisés en vulgarisation scientifique. L’analyse des entretiens avec les répondants a révélé que si les acteurs rencontrés sont favorables envers de telles initiatives, il existe plusieurs contraintes pouvant gêner une telle entreprise. Suite à l’examen de ces contraintes, nous avons suggéré des initiatives concrètes que les chercheurs québécois pourraient mettre en place pour mieux baliser le développement des nanotechnologies à l’aide d’un dialogue avec le public. Ces suggestions consistent notamment à créer des médias privés pour les chercheurs, à recourir aux médias indépendants et à investir le web. De telles initiatives, cependant, ne peuvent s’obtenir qu’au prix d’un remaniement des priorités des chercheurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La nanomédecine, soit l’application des nanotechnologies à des activités médicales (diagnostic, thérapie, suivi du patient, etc.) soulève l’espoir d’une médecine améliorée aux applications extraordinaires, par exemple dans le domaine de la médecine régénérative. La nanomédecine suscite néanmoins des questions éthiques quant à ses buts et ses applications. Dans cette présentation, nous proposons de faire le point sur les enjeux éthiques associés à la nanomédecine. Pour y arriver, nous examinerons la littérature consacrée à ce sujet mais, aussi, les applications concrètes de la nanomédecine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considérée comme le futur de la pratique médicale, la nanomédecine est l’application des nanotechnologies aux soins de santé. Plus qu’un nouveau domaine d’application technologique, la nanomédecine est porteuse d’un nouveau paradigme biomédical qui promeut une conception technoscientifique de la santé. Ce nouveau paradigme regroupe sous le préfixe nano l’ensemble des grandes tendances actuelles de la recherche en santé : la médecine prédictive, la médecine personnalisée et la médecine régénératrice. Centré sur le développement d’innovations visant au contrôle technique des éléments et des processus biologiques fondamentaux, ce nouveau paradigme se développe largement grâce au soutien des gouvernements et aux promesses économiques qu’il soulève. Il se construit à la croisée du scientifique, du politique et de l’économique. Interroger la nanomédecine revient alors à examiner plus largement la forme et les conditions du sens des innovations biomédicales et à soulever les implications de la « technoscientifisation » des soins de santé. L’objectif de cette thèse est de rendre compte de la spécificité et des enjeux sociaux, culturels et politico-économiques caractéristiques du modèle biomédical technoscientifique porté par la nanomédecine à partir de sa conceptualisation sous la forme d’un idéaltype : la nanosanté. Si la nanomédecine renvoie de manière générale aux applications techniques de la nanotechnologie au domaine biomédical, la nanosanté renvoie aux diverses dimensions sociologiques constitutives de ces technologies et à leurs effets sur la santé et la société. Notre modèle de la nanosanté s’organise autour de trois dimensions : la transversalité, l’amélioration et la globalisation. Compte tenu de sa nature synthétique, ce modèle tridimensionnel permet iii d’aborder de front plusieurs questionnements cruciaux soulevés par le développement de la nanomédecine. Il permet d’éclairer le rapport contemporain à la santé et ses implications sur l’identité ; de mettre en lumière la centralité des technosciences dans la conception du progrès médical et social ; de mieux saisir les nouvelles formes globales de pouvoir sur la vie et les nouvelles formes d’inégalité et d’exploitation caractéristiques d’une société qui accorde une valeur grandissante à l’adaptabilité technique de l’humain et à l’économisation de la santé et du corps ; mais aussi de mieux comprendre le sens et les répercussions de l’engagement scientifique, politique et économique dans les innovations moléculaires et cellulaires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nanotecnologia, e a sua aplicação na área da biomedicina, em particular na terapêutica e diagnóstico oncológico, tem sido alvo de um desenvolvimento exponencial, com impacto profundo no que respeita a cuidados de saúde. O cancro é uma das doenças que afecta mais pessoas a nível mundial, com elevados índices de mortalidade, níveis de sofrimento físico e emocional e, encargos para o doente, família e sociedade. É uma doença complexa, e a prática clínica convencional constitui um paradigma, na medida em que se revela insuficiente e extremamente agressiva, expondo o doente a medicamentos citotóxicos, não específicos, com elevada toxicidade sistémica e efeitos adversos. A Nanomedicina, e a exploração das propriedades únicas das nanopartículas, apresenta a potencialidade de melhorar a capacidade de detecção e diagnóstico do cancro e, aumentar a especificidade e efectividade no tratamento das células tumorais. No entanto, o recurso a nanotecnologias continua a ser alvo de alguma controvérsia e cepticismo por parte de alguns elementos das comunidades científicas e académica. Com nanoprodutos já aprovados e utilizados em prática clínica e muitos outros em desenvolvimento e investigação em ensaios clínicos, a realização deste trabalho tem como objectivo compreender os conceitos de nanotecnologia e Nanomedicina, perceber o estado da arte, ponderando as vantagens e desvantagens da abordagem “nano” e a sua real aplicação à terapêutica oncológica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aptamers are a promising class of agents for biomolecules detection due to their small size, chemical stability and cost effectiveness over conventional bioreceptors such as antibodies. Recent advances in micro/nano-fabrication and biotechnology have driven active participation of engineers and molecular biologists in the development of aptasensors. This review examines aptasensors from a developer standpoint discussing surface immobilization techniques and mechanisms used to detect biomolecular interactions in the context of biotechnology and nanomedicine. The factors that affect accuracy, sensitivity and stability of aptasensors are also addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review aims to highlight many of the difficulties encountered in trying to achieve the task of delivering proteins and peptides through oral administration. The necessity of controlled protein and peptide release, protection and stability in the gastrointestinal tract, and ability to target specific areas are only a handful of the many problems associated with trying to engineer a useful solution. Current research gives strong indication that both cyclodextrins and nanoparticles could be highly useful in the search for a suitable method for such successful oral delivery of proteins and peptides. This review focuses on the use of cyclodextrins in pharmaceuticals, aiming to discuss the use of cyclodextrins in conjunction with nanoparticles for oral delivery of proteins. Both classical applications and more advanced "nanomedical" approaches are discussed. In order to achieve a complete overview this review will include background information about cyclodextrins, nanomedicine and their role in oral delivery systems. The use of absorption enhancers like cyclodextrins, bile salts and surfactants was used to facilitate bio-availability into the system. The state-of-the-art technology and challenges in this area are discussed, with typical examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Development of an effective, safe and targeted drug delivery system to fight cancer and other diseases is a prime focus in the area of drug discovery. The emerging field of nanotechnology has revolutionised the way cancer therapy and diagnosis is achieved primarily due to the recent advances in material engineering and drug availability. Further, the recognition of the crucial role played by anti-apoptotic proteins such as survivin, has initiated the development of therapeutics that can target this protein as an attempt to develop alternative cancer therapies. However, a key challenge faced in drug development is the efficient delivery of survivin-targeted molecules to specific areas in the body.Areas covered: This review primarily focuses on the different strategies employing nanotechnology for targeting survivin expressed in human cancers. Different nanomaterials incorporating nucleic molecules or drugs targeted at survivin are discussed and the results obtained from studies are highlighted.Expert opinion: There are extensive studies reporting different treatment regimens for cancer, however, they still result in systemic toxicity, reduced bioavailability and ineffective delivery. Novel approaches involve the use of biocompatible nanomaterials together with gene or drug molecules to target proteins such as survivin, which is overexpressed in cancerous cells. These nanoformulations allow the benefits of protecting easily degradable molecules, allow controlled release, and enhance targeted delivery and effectiveness. Hence, nanotherapy utilizing survivin targeting can be considered to play a key role in the development of personalized nanomedicine for cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the therapeutic potentials of 100% iron saturated-bovine lactoferrin encapsulated in alginate-chitosan polymeric nanocarriers (AEC-CP-Fe-bLf-NCs) were examined in in vitro inflammatory OA model and in collagen-induced arthritis (CIA) mice. Oral administration of nanocarriers in mice were non-toxic and significantly induced disease modifying activity by reducing joint inflammation and downregulating the expression of catabolic genes, IL-1β, NO, JNK and MAPK. In addition, up-regulation of type II collagen, aggrecan and inflammation depleted iron and calcium metabolisms via inhibition of miRNA of iron transporting receptors was shown in AEC-CP-Fe-bLf-NCs treated mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chronic systemic administration of d-Galactose in C57BL/6J mice showed a relatively high oxidative stress, amyloid-β expression and neuronal cell death. Enhanced expression of pyknotic nuclei, caspase-3 and reduced expression of neuronal integrity markers further confirmed the aforesaid insults. However, concomitant treatment with the recombinant protein (SurR9-C84A) and the anti-transferrin receptor antibody conjugated SurR9-C84A (SurR9+TFN) nanocarriers showed a significant improvement in the disease status and neuronal health. The beauty of this study is that the biodegradable Food and Drug Administration (FDA) approved poly(lactic-co-glycolic acid) (PLGA) nanocarriers enhanced the biological half-life and the efficacy of the treatments. The nanocarriers were effective in lowering the amyloid-β expression, enhancing the neuronal integrity markers and maintaining the basal levels of endogenous survivin that is essential for evading the caspase activation and apoptosis. The current study herein reports for the first time that the brain targeted SurR9-C84A nanocarriers alleviated the d-Galactose induced neuronal insults and has potential for future brain targeted nanomedicine application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.