937 resultados para Nanomaterials, Microgravity, Sol Gel, Silica
Resumo:
Transparent and translucent SnO2 aerogels with high specific surface area (>300m(2)/g) have been prepared by sol-gel process using tetra(n-butoxy)tin(IV) as a starting compound, and supercritical drying technique for solvent extraction. Light scattering measurements reveal that the polymeric cluster size distribution in sol system is gradually broadened during sol-gel transition. SEM images show that the aerogels are made up of the cottonlike oxide agglomerates with a large number of Pores. TEM images show that these aerogels seem to be self-similar at different magnifications. Their pore size distribution is pretty wide ranging, from mesopore to macropore especially for that of translucent aerogel. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
EU3+ -doped Y3Al5O12 (YAG:Eu3+) phosphors were synthesized by a facile sol-gel combustion method. In this process, citric acid traps the constituent cations and reduces the diffusion length of the precursors. YAG phase is obtained through sintering at 900 degrees C for 2h. There were no intermediate phases such as YAlO3 (YAP) and Y4Al2O9 (YAM) observed. The charge transfer band of nanocrystalline phosphors shows a shift toward the high-energy side, compared with that of amorphous ones due to lower covalency of Eu-O bond for nanocrystalline phosphors. The higher concentration quenching in YAG:EU3+ nanophosphors may be caused by the confinement effect on resonant energy transfer of nanocrystalline. It also indicates that the sol-gel combustion synthesis method provides a good distribution of Eu3+ activators in YAG host. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this article, we report an optical fluoride probe based on microstructured polymer optical fibers (MPOFs) which is modified with morin-Al complex doped silica gel film. This probe is fabricated by sol-gel fluxion coating process. Sol solution doped with morin-Al is directly inhaled into array holes of MPOF and then forms morin-Al-gel matrix film in them. The sensing probe shows different fluorescence intensity to different fluoride ion concentrations in the aqueous solution. The range of response is 550 mmol/L, under the condition of pH 4.6. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Near-infrared luminescence from sol-gel materials doped with holmium(III) and thulium(III) complexes
Resumo:
A series of ternary Ln(tta)(3)L complexes (Ln = Ho, Tm; Htta = 2-thenoyltrifluoroacetone; L = 1,10-phenanthroline, 2,2'-bipyridine, or triphenyl phosphate oxide) and their corresponding sol-gel hybrid materials formed via the in situ synthesis process (designated as Ln-T-L gel) were reported. The complexes and the gels were studied in detail, which suggest the complexes have been successfully synthesized in the corresponding gels.
Resumo:
A sol-gel process has been developed to prepare polyimide (PI)/Al2O3 hybrid films with different contents of Al2O3 based on pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) as monomers. FESEM and TEM images indicated that Al2O3 particles are relatively well dispersed in the polyimide matrix after ultrasonic treatment of the sol from aluminum isopropoxide and thermal imidization of the gel film. The dimensional stability, thermal stability, mechanical properties of hybrid PI films were improved obviously by an addition of adequate Al2O3 content, whereas, dielectric property and the elongation at break decreased with the increase of Al2O3 content. Surprisingly, the corona-resistance property of hybrid film was improved greatly with increasing Al2O3 content within certain range as compared with pure PI film.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).
Resumo:
A novel method for immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)Cl-2) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy)(3)Cl-2 immobilized sol-gel (Ru(bpy)(3)Cl-2/sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy)(3)Cl-2 was successfully incorporated into the silica sol-gel film. it was found that many irregular Ru(bpy)(3)Cl-2/sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition.
Resumo:
An electrochemiluminescent glucose biosensor was proposed based on gold nanoparticle-catalyzed luminol electrochemiluminescence (ECL). Gold nanoparticles were self-assembled onto silica sol-gel network, and then glucose oxidase was adsorbed on the surface of gold nanoparticles. The surface assembly process and the electrochemistry and ECL behaviors of the biosensor were investigated. The assembled gold nanoparticles could efficiently electrocatalyze luminol ECL ECL intensity of the biosensor depended on scan rate, luminol concentration, and size of gold nanoparticles.
Resumo:
Highly crystalline CaMoO4:Tb3+ phosphor layers were grown on monodisperse SiO2 particles through a simple sol-gel method, resulting in formation of core-shell structured SiO2@CaMoO4:Tb3+ submicrospheres. The resulting SiO2@CaMoO4: Tb3+ core-shell particles were fully characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and kinetic decays. The XRD results demonstrate that the CaMoO4:Tb3+ layers begin to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. SEM and TEM analysis indicates that the obtained submicrospheres have a uniform size distribution and obvious core-shell structure. SiO2@CaMoO4:Tb3+ submicrospheres show strong green emission under short ultraviolet (260 nm) and low-voltage electron beam (1-3 kV) excitation, and the emission spectra are dominated by a D-5(4) -F-7(5) transition of Tb3+(544 nm, green) from the CaMoO4:Tb3+ shells.
Resumo:
Monodisperse, core-shell-structured SiO2@NaGd(WO4)(2):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL), and low-voltage cathodoluminescence (CL) as well as time-resolved PL spectra and lifetimes. PL and CL study revealed that the core-shell-structured SiO2@NaGd (WO4)(2):Eu3+ particles show strong red emission dominated by the D-5(0) - F-7(2) transition of Eu3+ at 614 nm with a lifetime of 0.74 ms. The PL and CL emission intensity can be tuned by the coating number of NaGd(WO4)(2):Eu3+ phosphor layers on SiO2 and by accelerating voltage and the filament current, respectively.
Resumo:
Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol-gel method, resulting in the formation of core-shell structured SiO2@GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2@GdPO4: Eu3+ phosphors show orange-red luminescence with Eu(3+)sD(0)-F-7(1) (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2@GdPO4: Eu3+ phosphors. The obtained core-shell phosphors have potential applications in FED and PDP devices.
Resumo:
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.
Resumo:
A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)-) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.
Resumo:
The electroactivity of polyaniline was extended to pH = 14 alkaline media by preparation of a novel electrostatic interaction conductive hybrid from water-borne conductive polyaniline and silica network containing carboxyl groups via sol-gel process. In addition, the obtained conductive polyaniline hybrid film displayed very low conductivity threshold percolation and demonstrated excellent stability upon cycling.
Resumo:
(Ni0.65Zn035Cu0.1Fe1.904)-Cu-./SiO2 natiocomposites were fabricated by the sol-gel method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. With infrared spectra, X-ray diffraction, transmission electron microscope, Raman spectra, Mossbauer spectroscopy and vibrating sample magnetometer measurements, the formation of single phase nanocrystalline NiZnCu ferrites dispersed in silica matrix is confirmed when the sample is annealed at 550degreesC. The transition from the paramagnetic to the ferromagnetic state is observed as the annealing temperature increases from 750degreesC to 1150degreesC. The magnetic properties of these nanocomposites are clearly size dependent. The saturation magnetization increases with the annealing temperature.