967 resultados para NUMERICAL METHODS
Resumo:
The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.
Resumo:
Thermal systems interchanging heat and mass by conduction, convection, radiation (solar and thermal ) occur in many engineering applications like energy storage by solar collectors, window glazing in buildings, refrigeration of plastic moulds, air handling units etc. Often these thermal systems are composed of various elements for example a building with wall, windows, rooms, etc. It would be of particular interest to have a modular thermal system which is formed by connecting different modules for the elements, flexibility to use and change models for individual elements, add or remove elements without changing the entire code. A numerical approach to handle the heat transfer and fluid flow in such systems helps in saving the full scale experiment time, cost and also aids optimisation of parameters of the system. In subsequent sections are presented a short summary of the work done until now on the orientation of the thesis in the field of numerical methods for heat transfer and fluid flow applications, the work in process and the future work.
Resumo:
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.
Resumo:
An active strain formulation for orthotropic constitutive laws arising in cardiac mechanics modeling is introduced and studied. The passive mechanical properties of the tissue are described by the Holzapfel-Ogden relation. In the active strain formulation, the Euler-Lagrange equations for minimizing the total energy are written in terms of active and passive deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiac cells. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed and different mechanical activation functions are considered. In addition, the active strain formulation is compared with the classical active stress formulation from both numerical and modeling perspectives. Taylor-Hood and MINI finite elements are employed to discretize the mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main key features of the phenomenon, while allowing savings in computational costs.
Resumo:
Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this slight, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.
Resumo:
Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this light, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.
Resumo:
Yksi keskeisimmistä tehtävistä matemaattisten mallien tilastollisessa analyysissä on mallien tuntemattomien parametrien estimointi. Tässä diplomityössä ollaan kiinnostuneita tuntemattomien parametrien jakaumista ja niiden muodostamiseen sopivista numeerisista menetelmistä, etenkin tapauksissa, joissa malli on epälineaarinen parametrien suhteen. Erilaisten numeeristen menetelmien osalta pääpaino on Markovin ketju Monte Carlo -menetelmissä (MCMC). Nämä laskentaintensiiviset menetelmät ovat viime aikoina kasvattaneet suosiotaan lähinnä kasvaneen laskentatehon vuoksi. Sekä Markovin ketjujen että Monte Carlo -simuloinnin teoriaa on esitelty työssä siinä määrin, että menetelmien toimivuus saadaan perusteltua. Viime aikoina kehitetyistä menetelmistä tarkastellaan etenkin adaptiivisia MCMC menetelmiä. Työn lähestymistapa on käytännönläheinen ja erilaisia MCMC -menetelmien toteutukseen liittyviä asioita korostetaan. Työn empiirisessä osuudessa tarkastellaan viiden esimerkkimallin tuntemattomien parametrien jakaumaa käyttäen hyväksi teoriaosassa esitettyjä menetelmiä. Mallit kuvaavat kemiallisia reaktioita ja kuvataan tavallisina differentiaaliyhtälöryhminä. Mallit on kerätty kemisteiltä Lappeenrannan teknillisestä yliopistosta ja Åbo Akademista, Turusta.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
Computational model-based simulation methods were developed for the modelling of bioaffinity assays. Bioaffinity-based methods are widely used to quantify a biological substance in biological research, development and in routine clinical in vitro diagnostics. Bioaffinity assays are based on the high affinity and structural specificity between the binding biomolecules. The simulation methods developed are based on the mechanistic assay model, which relies on the chemical reaction kinetics and describes the forming of a bound component as a function of time from the initial binding interaction. The simulation methods were focused on studying the behaviour and the reliability of bioaffinity assay and the possibilities the modelling methods of binding reaction kinetics provide, such as predicting assay results even before the binding reaction has reached equilibrium. For example, a rapid quantitative result from a clinical bioaffinity assay sample can be very significant, e.g. even the smallest elevation of a heart muscle marker reveals a cardiac injury. The simulation methods were used to identify critical error factors in rapid bioaffinity assays. A new kinetic calibration method was developed to calibrate a measurement system by kinetic measurement data utilizing only one standard concentration. A nodebased method was developed to model multi-component binding reactions, which have been a challenge to traditional numerical methods. The node-method was also used to model protein adsorption as an example of nonspecific binding of biomolecules. These methods have been compared with the experimental data from practice and can be utilized in in vitro diagnostics, drug discovery and in medical imaging.