890 resultados para NUCLEAR FACTOR-KAPPA B


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candida yeast species are widespread opportunistic microbes, which are usually innocent opportunists unless the systemic or local defense system of the host becomes compromised. When they adhere on a fertile substrate such as moist and warm, protein-rich human mucosal membrane or biomaterial surface, they become activated and start to grow pseudo and real hyphae. Their growth is intricately guided by their ability to detect surface defects (providing secure hiding , thigmotropism) and nutrients (source of energy, chemotropism). The hypothesis of this work was that body mobilizes both non-specific and specific host defense against invading candidal cells and that these interactions involve resident epithelial cells, rapidly responding non-specific protector neutrophils and mast cells as well as the antigen presenting and responding den-dritic cell lymphocyte plasma cell system. It is supposed that Candida albicans, as a result of dar-winistic pressure, has developed or is utilizing strategies to evade these host defense reactions by e.g. adhering to biomaterial surfaces and biofilms. The aim of the study was to assess the host defense by taking such key molecules of the anti-candidal defense into focus, which are also more or less characteristic for the main cellular players in candida-host cell interactions. As a model for candidal-host interaction, sections of chronic hyperplastic candidosis were used and compared with sections of non-infected leukoplakia and healthy tissue. In this thesis work, neutrophil-derived anti-candidal α-defensin was found in the epithelium, not only diffusely all over in the epithelium, but as a strong α-defensin-rich superficial front probably able to slow down or prevent penetration of candida into the epithelium. Neutrophil represents the main host defence cell in the epithelium, to which it can rapidly transmigrate from the circulation and where it forms organized multicellular units known as microabscesses (study I). Neutrophil chemotactic inter-leukin-8 (IL-8) and its receptor (IL-8R) were studied and were surprisingly also found in the candidal cells, probably helping the candida to keep away from IL-8- and neutrophil-rich danger zones (study IV). Both leukocytes and resident epithelial cells contained TLR2, TLR4 and TLR6 receptors able to recognize candidal structures via utilization of receptors similar to the Toll of the banana fly. It seems that candida can avoid host defence via stimulation of the candida permissive TLR2 instead of the can-dida injurious TLR4 (study V). TLR also provides the danger signal to the immune system without which it will not be activated to specifically respond against candidal antigens. Indeed, diseased sites contained receptor activator of nuclear factor kappa B ligand (RANKL; II study), which is important for the antigen capturing, processing and presenting dendritic cells and for the T lymphocyte activation (study III). Chronic hyperplastic candidosis provides a disease model that is very useful to study local and sys-temic host factors, which under normal circumstances restrain C. albicans to a harmless commensal state, but failure of which in e.g. HIV infection, cancer and aging may lead to chronic infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis clarifies important molecular pathways that are activated during the cell death observed in Huntington’s disease. Huntington’s disease is one of the most common inherited neurodegenerative diseases, which is primarily inherited in an autosomal dominant manner. HD is caused by an expansion of CAG repeats in the first exon of the IT15 gene. IT15 encodes the production of a Huntington’s disease protein huntingtin. Mutation of the IT15 gene results in a long stretch of polyQ residues close to the amino-terminal region of huntingtin. Huntington’s disease is a fatal autosomal neurodegenerative disorder. Despite the current knowledge of HD, the precise mechanism behind the selective neuronal death, and how the disease propagates, still remains an enigma. The studies mainly focused on the control of endoplasmic reticulum (ER) stress triggered by the mutant huntingtin proteins. The ER is a delicate organelle having essential roles in protein folding and calcium regulation. Even the slightest perturbations on ER homeostasis are effective enough to trigger ER stress and its adaptation pathways, called unfolded protein response (UPR). UPR is essential for cellular homeostasis and it adapts ER to the changing environment and decreases ER stress. If adaptation processes fail and stress is excessive and prolonged; irreversible cell death pathways are engaged. The results showed that inhibition of ER stress with chemical agents are able to decrease cell death and formation of toxic cell aggregates caused by mutant huntingtin proteins. The study concentrated also to the NF-κB (nuclear factor-kappaB) pathway, which is activated during ER stress. NF-κB pathway is capable to regulate the levels of important cellular antioxidants. Cellular antioxidants provide a first line of defence against excess reactive oxygen species. Excess accumulation of reactive oxygen species and subsequent activation of oxidative stress damages motley of vital cellular processes and induce cell degeneration. Data showed that mutant huntingtin proteins downregulate the expression levels of NF-κB and vital antioxidants, which was followed by increased oxidative stress and cell death. Treatment with antioxidants and inhibition of oxidative stress were able to counteract these adverse effects. In addition, thesis connects ER stress caused by mutant huntingtin to the cytoprotective autophagy. Autophagy sustains cellular balance by degrading potentially toxic cell proteins and components observed in Huntington’s disease. The results revealed that cytoprotective autophagy is active at the early points (24h) of ER stress after expression of mutant huntingtin proteins. GADD34 (growth arrest and DNA damage-inducible gene 34), which is previously connected to the regulation of translation during cell stress, was shown to control the stimulation of autophagy. However, GADD34 and autophagy were downregulated at later time points (48h) during mutant huntingtin proteins induced ER stress, and subsequently cell survival decreased. Overexpression GADD34 enhanced autophagy and decreased cell death, indicating that GADD34 plays a critical role in cell protection. The thesis reveales new interesting data about the neuronal cell death pathways seen in Huntington’s disease, and how cell degeneration is partly counteracted by various therapeutic agents. Expression of mutant huntingtin proteins is shown to alter signaling events that control ER stress, oxidative stress and autophagy. Despite that Huntington’s disease is mainly an untreatable disorder; these findings offer potential targets and neuroprotective strategies in designing novel therapies for Huntington’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression. Further, pharmacological inhibition of ERK1/2, but not of p38 MAP kinase or JNK abrogated the induced expression of SOCS3. The PIM2 induced activation of ERK1/2 was dependent on the activation of PI3K or PKC signaling which in turn regulated p65 nuclear factor -kappa B (NF-kappa B) nuclear translocation. Overall, current study delineates the role for PI3K-PKC axis and ERK1/2 signaling as key signaling events during PIM2 induced SOCS3 expression in macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Osteoporosis is the commonest metabolic bone disease worldwide. The clinical hallmark of osteoporosis is low trauma fracture, with the most devastating being hip fracture, resulting in significant effects on both morbidity and mortality. Sources of data: Data for this review have been gathered from the published literature and from a range of web resources. Areas of agreement: Genome-wide association studies in the field of osteoporosis have led to the identification of a number of loci associated with both bone mineral density and fracture risk and further increased our understanding of disease. Areas of controversy: The early strategies for mapping osteoporosis disease genes reported only isolated associations, with replication in independent cohorts proving difficult. Neither candidate gene or linkage studies showed association at genome-wide level of significance. Growing points: The advent of massive parallel sequencing technologies has proved extremely successful in mapping monogenic diseases and thus leading to the utilization of this new technology in complex disease genetics. Areas timely for developing research: The identification of novel genes and pathways will potentially lead to the identification of novel therapeutic options for patients with osteoporosis. © 2014 The Author.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Missense and frameshift mutations in TRAF family member-associated NF-kappa-B activator (TANK)-binding kinase 1 (TBK1) have been reported in European sporadic and familial amyotrophic lateral sclerosis (ALS) cohorts. To assess the role of TBK1 in ALS patient cohorts of wider ancestry, we have analyzed whole-exome sequence data from an Australian cohort of familial ALS (FALS) patients and controls. We identified a novel TBK1 deletion (c.1197delC) in a FALS patient of Chinese origin. This frameshift mutation (p.L399fs) likely results in a truncated protein that lacks functional domains required for adapter protein binding, as well as protein activation and structural integrity. No novel or reported TBK1 mutations were identified in FALS patients of European ancestry. This is the first report of a TBK1 mutation in an ALS patient of Asian origin and indicates that sequence variations in TBK1 are a rare cause of FALS in Australia. © 2015 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Approximately 50% of patients with stage 3 Chronic Kidney Disease are 25-hydroxyvitamin D insufficient, and this prevalence increases with falling glomerular filtration rate. Vitamin D is now recognised as having pleiotropic roles beyond bone and mineral homeostasis, with the vitamin D receptor and metabolising machinery identified in multiple tissues. Worryingly, recent observational data has highlighted an association between hypovitaminosis D and increased cardiovascular mortality, possibly mediated via vitamin D effects on insulin resistance and inflammation. The main hypothesis of this study is that oral Vitamin D supplementation will ameliorate insulin resistance in patients with Chronic Kidney Disease stage 3 when compared to placebo. Secondary hypotheses will test whether this is associated with decreased inflammation and bone/adipocyte-endocrine dysregulation. METHODS/DESIGN This study is a single-centre, double-blinded, randomised, placebo-controlled trial. Inclusion criteria include; estimated glomerular filtration rate 30-59 ml/min/1.73 m(2); aged >or=18 on entry to study; and serum 25-hydroxyvitamin D levels <75 nmol/L. Patients will be randomised 1:1 to receive either oral cholecalciferol 2000IU/day or placebo for 6 months. The primary outcome will be an improvement in insulin sensitivity, measured by hyperinsulinaemic euglycaemic clamp. Secondary outcome measures will include serum parathyroid hormone, cytokines (Interleukin-1beta, Interleukin-6, Tumour Necrosis Factor alpha), adiponectin (total and High Molecular Weight), osteocalcin (carboxylated and under-carboxylated), peripheral blood mononuclear cell Nuclear Factor Kappa-B p65 binding activity, brachial artery reactivity, aortic pulse wave velocity and waveform analysis, and indirect calorimetry. All outcome measures will be performed at baseline and end of study. DISCUSSION To date, no randomised controlled trial has been performed in pre-dialysis CKD patients to study the correlation between vitamin D status with supplementation, insulin resistance and markers of adverse cardiovascular risk. We remain hopeful that cholecalciferol may be a safe intervention, with health benefits beyond those related to bone-mineral homeostasis. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry ACTRN12609000246280.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of inflammatory immune responses during granuloma formation by the host upon infection of mycobacteria is one of the crucial steps that is often associated with tissue remodeling and breakdown of the extracellular matrix. In these complex processes, cyclooxygenase-2 (COX-2) plays a major role in chronic inflammation and matrix metalloproteinase-9 (MMP-9) significantly in tissue remodeling. In this study, we investigated the molecular mechanisms underlying Phosphatidyl-myo-inositol dimannosides (PIM2), an integral component of the mycobacterial envelope, triggered COX-2 and MMP-9 expression in macrophages. PIM2 triggers the activation of Phosphoinositide-3 Kinase (PI3K) and Notch1 signaling leading to COX-2 and MMP-9 expression in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Notch1 signaling perturbations data demonstrate the involvement of the cross-talk with members of PI3K and Mitogen activated protein kinase pathway. Enforced expression of the cleaved Notch1 in macrophages induces the expression of COX-2 and MMP-9. PIM2 triggered significant p65 nuclear factor-kappa B (NF-kappa B) nuclear translocation that was dependent on activation of PI3K or Notch1 signaling. Furthermore, COX-2 and MMP-9 expression requires Notch1 mediated recruitment of uppressor of Hairless (CSL) and NF-kappa B to respective promoters. Inhibition of PIM2 induced COX-2 resulted in marked reduction in MMP-9 expression clearly implicating the role of COX-2 dependent signaling events in driving the MMP-9 expression. Taken together, these data implicate PI3K and Notch1 signaling as obligatory early proximal signaling events during PIM2 induced COX-2 and MMP-9 expression in macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rheumatoid arthritis is the most common of all types of arthritis and despite of intensive research etiology of the disease remains unclear. Distinctive features of rheumatic arthritis comprise continuous inflammation of synovium, in which synovial membrane expands on cartilage leading to pannus tissue formation. Pannus formation, appearance of proteolytic enzymes and osteoclast formation cause articular cartilage and bone destruction, which lead to erosions and permanent joint damage. Proteolytic pathways play major roles in the development of tissue lesions in rheumatoid arthritis. Degradation of extracellular matrix proteins is essential to pannus formation and invasion. Matrix metalloproteinases (MMP) form a large proteolytic enzyme family and in rheumatoid arthritis they contribute to pannus invasion by degrading extracellular matrix and to joint destruction by directly degrading the cartilage. MMP-1 and MMP-3 are shown to be increased during cell invasion and also involved in cartilage destruction. Increase of many cytokines has been observed in rheumatoid arthritis, especially TNF-α and IL-1β are studied in synovial tissue and are involved in rheumatoid inflammation and degradation of cartilage. Underlying bone resorption requires first demineralization of bone matrix with acid secreted by osteoclasts, which exposes the collagen-rich matrix for degradation. Cathepsin K is the best known enzyme involved in bone matrix degradation, however deficiency of this protein in pycnodysostosis patient did not prevent bone erosion and on the contrary pannus tissue invading to bone did not expressed much cathepsin K. These indicate that other proteinases are involved in bone degradation, perhaps also via their capability to replace the role of other enzymes especially in diseases like pycnodysostosis or during medication e.g. using cathepsin K inhibitors. Multinuclear osteoclasts are formed also in pannus tissue, which enable the invasion into underlying bone matrix. Pannus tissue express a receptor activator of nuclear factor kappa B ligand (RANKL), an essential factor for osteoclast differentiation and a disintegrin and a metalloproteinase 8 (ADAM8), an osteoclast-activating factors, involved in formation of osteoclast-like giant cells by promoting fusion of mononuclear precursor cells. The understanding of pannus invasion and degradation of extracellular matrix in rheumatic arthritis will open us new more specific methods to prevent this destructive joint disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferon-gamma (IFN gamma) is a central regulator of the immune response and signals via the Janus Activated Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway. Phosphorylated STAT1 homodimers translocate to the nucleus, bind to Gamma Activating Sequence (GAS) and recruit additional factors to modulate gene expression. A bioinformatics analysis revealed that greater number of putative promoters of immune related genes and also those not directly involved in immunity contain GAS compared to response elements (RE) for Interferon Regulatory Factor (IRF)1, Nuclear factor kappa B (NF kappa B) and Activator Protein (AP)1. GAS is present in putative promoters of well known IFN gamma-induced genes, IRF1, GBP1, CXCL10, and other genes identified were TLR3, VCAM1, CASP4, etc. Analysis of three microarray studies revealed that the expression of asubset of only GAS containing immune genes were modulated by IFN gamma. As a significant correlation exists between GAS containing immune genes and IFN gamma-regulated gene expression, this strategy may identify novel IFN gamma-responsive immune genes. This analysis is integrated with the literature on the roles of IFN gamma in mediating a plethoraof functions: anti-microbial responses, antigen processing,inflammation, growth suppression, cell death, tumor immunity and autoimmunity. Overall, this review summarizes our present knowledge onIFN gamma mediated signaling and functions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we determined the molecular mechanisms of how homocysteine differentially affects receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG) synthesis in the bone. The results showed that oxidative stress induced by homocysteine deranges insulin-sensitive FOXO1 and MAP kinase signaling cascades to decrease OPG and increase RANKL synthesis in osteoblast cultures. We observed that downregulation of insulin/FOXO1 and p38 MAP kinase signaling mechanisms due to phosphorylation of protein phosphatase 2 A (PP2A) was the key event that inhibited OPG synthesis in homocysteine-treated osteoblast cultures. siRNA knockdown experiments confirmed that FOXO1 is integral to OPG and p38 synthesis. Conversely homocysteine increased RANKL synthesis in osteoblasts through c-Jun/JNK MAP kinase signaling mechanisms independent of FOXO1. In the rat bone milieu, high-methionine diet-induced hyperhomocysteinemia lowered FOXO1 and OPG expression and increased synthesis of proresorptive and inflammatory cytokines such as RANKL, M-CSF, IL-1 alpha, IL-1 beta, G-CSF, GM-CSF, MIP-1 alpha, IFN-gamma, IL-17, and TNF-alpha. Such pathophysiological conditions were exacerbated by ovariectomy. Lowering the serum homocysteine level by a simultaneous supplementation with N-acetylcysteine improved OPG and FOXO1 expression and partially antagonized RANKL and proresorptive cytokine synthesis in the bone milieu. These results emphasize that hyperhomocysteinemia alters the redox regulatory mechanism in the osteoblast by activating PP2A and deranging FOXO1 and MAPK signaling cascades, eventually shifting the OPG:RANKL ratio toward increased osteoclast activity and decreased bone quality (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dictamnus dasycarpus is widely used as a traditional remedy for the treatment of eczema, rheumatism, and other inflammatory diseases in Asia. The current study investigates the molecular mechanism of anti-inflammatory action of the ethanol extract of Dictamnus dasycarpus leaf (DE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Nitric oxide (NO) production was assessed by Griess reaction and the mRNA and protein expressions of pro inflammatory cytokines, transcription factor, and enzymes were determined by real-time RT-PCR and immunoblotting analysis. Results: DE (0.5 and 1 mg/mL) suppressed the NO production by 10 and 33%, respectively, compared to the untreated group in LPS-stimulated RAW 264.7 cells. DE (0.5 and 1 mg/mL) reduced the mRNA expression of key transcription factor nuclear factor-kappa B by 7 and 24%, respectively compared to the untreated group in LPS activated macrophage. The pro inflammatory cytokines such as tumor necrosis factor a and interleukin 1 beta were also decreased by DE treatment. Moreover, the protein expression of pro inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase 2 were also dramatically attenuated by DE in a dose dependent manner. Conclusions: These results suggest that Dictamnus dasycarpus leaf has a potent anti-inflammatory activity and can be used for the development of new anti-inflammatory agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cistite hemorrágica (CH) consiste em um processo inflamatório difuso de origem infecciosa ou não que resulta em um sangramento da mucosa vesical. As CH crônicas recorrentes induzidas pela ciclofosfamida (CYP) são um desafio na prática clínica pela alta morbidade e por vezes mortalidade dos pacientes. O tratamento da CH induzida pela ciclofosfamida consiste no uso de MESNA, disulfiram, N-acetil-cisteína, anti-inflamatório, oxigênio hiperbárico, hiper-hidratação e irrigação vesical, mas novas terapias têm sido investigadas, inclusive usando produtos naturais. A espécie vegetal Chenopodium ambrosioides L., conhecida popularmente como mastruz, mastruço e erva-de-Santa-Maria, tem sido relatada pela população como anti-inflamatório e analgésico. O presente estudo investigou os efeitos do extrato bruto hidroalcoólico de folhas de Chenopodium ambrosioides na CH induzida pela ciclofosfamida em ratos. Vinte e nove ratos receberam 150 mg/kg de CYP por via intraperitoneal (i.p.) para indução de CH e em seguida foram divididos em três grupos: controle negativo (CN), tratados com soro fisiológico a 0,9%; extrato bruto hidroalcoólico de Chenopodium ambrosioides (EBHCa), tratado com dose única de 50 mg/kg de extrato bruto hidroalcoólico de Chenopodium ambrosioides (EBH) e controle positivo (CP), tratados com dose única de 15 mg/kg de diclofenaco de potássio, todos por gavagem. Após 48 horas da indução da CH os animais foram sacrificados para retirada da bexiga, que foi preparada para análise histopatológica e imuno-histoquímica. O EBH foi capaz de diminuir o peso da bexiga e histologicamente a inflamação aguda e crônica da bexiga, a extensão do infiltrado inflamatório na parede vesical e a neoformação capilar do mesmo modo que o diclofenaco de potássio, quando comparados ao grupo CN. Observou-se ainda uma redução da expressão imuno-histoquímica de cicloxigenase-2 (COX-2) e do fator nuclear kappa B (NFB) na bexiga. No presente estudo o EBH das folhas de Chenopodium ambrosioides apresentou atividade anti-inflamatória, semelhante ao diclofenaco de potássio, no tratamento da CH induzida pela CYP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O óleo de peixe é rico em ácidos graxos poli-insaturados (AGPI) n-3 e vem sendo apontado como anti-inflamatório associado à melhora de diversas doenças de natureza inflamatória. No presente estudo, objetivou-se avaliar a influência do óleo de peixe sobre a inflamação pulmonar e hiper-reatividade em camundongos ativamente sensibilizados desafiados com ovoalbumina (OVA). Camundongos A/J machos foram alimentados com dieta standard-chow (SC) ou dieta rica em óleo de peixe (Px) durante 8 semanas. Após 4 semanas do início da dieta, cada grupo foi subdividido aleatoriamente para ser desafiado com salina (SC-SAL e PX-SAL) ou ovoalbumina (SC-OVA e PX-OVA). A função pulmonar (resistência e elastância) foi avaliada através de pletismografia invasiva, na condição de aerolização ou não com metacolina 24 horas após o último desafio antigênico. Foi realizado lavado broncoalveolar (LBA) para contagem de leucócitos e quantificação de eotaxina-2. A deposição de muco e de matriz peribronquiolar e o infiltrado de eosinófilos foram quantificados no tecido pulmonar. Foram avaliados interleucina (IL)-13 através de imunohistoquímica e NFκB, GATA-3 e PPARγ, por western-blotting. O desafio com OVA resultou em aumento da infiltração de eosinófilos, elevada produção de citocinas inflamatórias, remodelamento pulmonar, produção de muco e hiper-reatividade das vias aéreas. Detectou-se aumento na expressão dos fatores de transcrição NFκB e GATA-3 nos camundongos do grupo sensibilizado e desafiado com OVA em comparação aos controles. Todas essas alterações foram atenuadas nos camundongos que receberam dieta com óleo de peixe. Expressão elevada de PPARγ foi detectada nos pulmões dos camundongos dos grupos alimentados com óleo de peixe. Em conclusão, nossos resultados mostram que a ingestão de óleo de peixe atenuou as características clássicas do quadro asmático através da modulação da síntese de mediadores inflamatórios, via regulação negativa de NFκB e GATA-3 e regulação positiva de PPARγ. O óleo de peixe parece ser uma terapia alternativa para o controle e tratamento da asma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tumor necrosis factor receptor-associated factor 2 binding protein (T2BP) gene was isolated from the grass carp (Ctenopharyngodon idellus) by utilizing suppression subtractive hybridization (SSH) and rapid amplification of cDNA ends (RACE). The grass carp T2BP (GT2BP) gene contains an open reading frame of 579 nucleotide(s) (nt), encoding 193 amino acids, with 23 nt 5'-untranslated region and a long 3'-untranslated region of 434 nt including poly (A), 1 AUUUA motif and 4 AUUUUA motifs. No signal peptide has been detected in the predicted GT2BP, but a characteristic forkhead associated domain is present. The GT2BP mRNA shares 83% identity with the zebrafish DNA sequence, and they both have no introns in the genomic DNA. The putative transcription factor binding sites of GT2BP include two C/EBP alpha binding sites, and one c-Jun binding, one AP-1 binding, and one nuclear factor kappa B (NF kappa B) binding sites. Southern blot analysis revealed that the GT2BP was a single-copy gene. Individual difference was observed in GT2BP expression in examined organs of healthy grass carp. However, the expression of GT2BP in all examined organs in a fish with the highest copepod infection level and the significantly higher expression level in spleen and liver in infected fish may indicate its up-regulation with the parasite infection. (c) 2005 Elsevier B.V. All rights reserved.