998 resultados para NONSTRUCTURAL PROTEIN NSS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first complete genome sequence of capsicum chlorosis virus (CaCV) from Australia was determined using a combination of Illumina HiSeq RNA and Sanger sequencing technologies. Australian CaCV had a tripartite genome structure like other CaCV isolates. The large (L) RNA was 8913 nucleotides (nt) in length and contained a single open reading frame (ORF) of 8634 nt encoding a predicted RNA-dependent RNA polymerase (RdRp) in the viral-complementary (vc) sense. The medium (M) and small (S) RNA segments were 4846 and 3944 nt in length, respectively, each containing two non-overlapping ORFs in ambisense orientation, separated by intergenic regions (IGR). The M segment contained ORFs encoding the predicted non-structural movement protein (NSm; 927 nt) and precursor of glycoproteins (GP; 3366 nt) in the viral sense (v) and vc strand, respectively, separated by a 449-nt IGR. The S segment coded for the predicted nucleocapsid (N) protein (828 nt) and non-structural suppressor of silencing protein (NSs; 1320 nt) in the vc and v strand, respectively. The S RNA contained an IGR of 1663 nt, being the largest IGR of all CaCV isolates sequenced so far. Comparison of the Australian CaCV genome with complete CaCV genome sequences from other geographic regions showed highest sequence identity with a Taiwanese isolate. Genome sequence comparisons and phylogeny of all available CaCV isolates provided evidence for at least two highly diverged groups of CaCV isolates that may warrant re-classification of AIT-Thailand and CP-China isolates as unique tospoviruses, separate from CaCV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orthobunyaviruses are the largest genus within the Bunyaviridae family, with over 170 named viruses classified into 18 serogroups (Elliott and Blakqori, 2001; Plyusnin et al., 2012). Orthobunyaviruses are transmitted by arthropods and have a tripartite negative sense RNA genome, which encodes 4 structural proteins and 2 non-structural proteins. The non-structural protein NSs is the primary virulence factor of orthobunyaviruses and potent antagonist of the type I interferon (IFN) response. However, sequencing studies have identified pathogenic viruses that lack the NSs protein (Mohamed et al., 2009; Gauci et al., 2010). The work presented in this thesis describes the molecular and biological characterisation of divergent orthobunyaviruses. Data on plaque morphology, growth kinetics, protein profiles, sensitivity to IFN and activation of the type I IFN system are presented for viruses in the Anopheles A, Anopheles B, Capim, Gamboa, Guama, Minatitlan, Nyando, Tete and Turlock serogroups. These are complemented with complete genome sequencing and phylogenetic analysis. Low activation of IFN by Tete serogroup viruses, which naturally lack an NSs protein, was also further investigated by the development of a reverse genetics system for Batama virus (BMAV). Recombinant viruses with mutations in the virus nucleocapsid protein amino terminus showed higher activation of type I IFN in vitro and data suggests that low levels of IFN are due to lower activation rather than active antagonism. The anti-orthobunyavirus activity of IFN-stimulated genes IFI44, IFITMs and human and ovine BST2 were also studied, revealing that activity varies not only within the orthobunyavirus genus and virus serogroups but also within virus species. Furthermore, there was evidence of active antagonism of the type I IFN response and ISGs by non-NSs viruses. In summary, the results show that pathogenicity in man and antagonism of the type I IFN response in vitro cannot be predicted by the presence, or absence, of an NSs ORF. They also highlight problems in orthobunyavirus classification with discordance between classical antigen based data and phylogenetic analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotavirus is a major cause of acute infantile diarrhoea worldwide. The virus genome consists of 11 segments of double-stranded RNA that codesfor six structural proteins (VP1-6) and six non-structural proteins(NSP1-6). NSPs are proteins expressed from the virus genome in the infected cell, but are not incorporated into the mature virus article. NSPs play an essential role in virus replication, morphogenesis and pathogenesis, and most of them exhibit multifunctional properties. Structure-function analysis of the NSPs is essential for understanding the molecular mechanisms by which the virus circumvents host innate immune responses, inhibits cellular protein synthesis, hijacks the protein synthetic machinery for its own propagation and manifests the disease process. Because of their essential roles in virus biology, NSPs represent potential targets for the development of antiviral agents. Determination of the three-dimensional structure of NSPs has been hindered due to low-level expression and aggregation. To date, the complete three-dimensional structure of only NSP2 has been determined. The structures of the N- and C-terminal domains of NSP3 and the diarrhoea-inducing domain of NSP4 have also been determined. This review primarily covers the structural and biological functions of the NSPs whose three-dimensional structural aspects have been fully or partially understood, but provides a brief account of other NSPs and the structural features of the mature virion as determined by electron cryomicroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dengue virus NS1 protein has been shown to be a protective antigen under different experimental conditions but the recombinant protein produced in bacterial expression systems is usually not soluble and loses structural and immunological features of the native viral protein In the present study, experimental conditions leading to purification and refolding of the recombinant dengue virus type 2 (DENV-2) NS1 protein expressed in Escherichia coil are described The refolded recombinant protein was recovered as heat-stable soluble dimers with preserved structural features, as demonstrated by spectroscopic methods In addition, antibodies against epitopes of the NS1 protein expressed in eukaryotic cells recognized the refolded protein expressed in E coli but not the denatured form or the same protein submitted to a different refolding condition Collectively, the results demonstrate that the recombinant NS1 protein preserved important conformation and antigenic determinants of the native virus protein and represents a valuable reagent either for the development of vaccines or for diagnostic methods. (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canine distemper virus (CDV) causes in dogs a severe systemic infection, with a high frequency of demyelinating encephalitis. Among the six genes transcribed by CDV, the P gene encodes the polymerase cofactor protein (P) as well as two additional nonstructural proteins, C and V; of these V was shown to act as a virulence factor. We investigated the molecular mechanisms by which the P gene products of the neurovirulent CDV A75/17 strain disrupt type I interferon (IFN-alpha/beta)-induced signaling that results in the establishment of the antiviral state. Using recombinant knockout A75/17 viruses, the V protein was identified as the main antagonist of IFN-alpha/beta-mediated signaling. Importantly, immunofluorescence analysis illustrated that the inhibition of IFN-alpha/beta-mediated signaling correlated with impaired STAT1/STAT2 nuclear import, whereas the phosphorylation state of these proteins was not affected. Coimmunoprecipitation assays identified the N-terminal region of V (VNT) responsible for STAT1 targeting, which correlated with its ability to inhibit the activity of the IFN-alpha/beta-mediated antiviral state. Conversely, while the C-terminal domain of V (VCT) could not function autonomously, when fused to VNT it optimally interacted with STAT2 and subsequently efficiently suppressed the IFN-alpha/beta-mediated signaling pathway. The latter result was further supported by a single mutation at position 110 within the VNT domain of CDV V protein, resulting in a mutant that lost STAT1 binding while retaining a partial STAT2 association. Taken together, our results identified the CDV VNT and VCT as two essential modules that complement each other to interfere with the antiviral state induced by IFN-alpha/beta-mediated signaling. Hence, our experiments reveal a novel mechanism of IFN-alpha/beta evasion among the morbilliviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-alpha/beta) and gamma IFN (IFN-gamma) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-alpha. IFN-alpha signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins. responsible for this inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.