946 resultados para NOAA Office of Ocean Exploration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new algorithm based on the multiparameter neural network is proposed to retrieve wind speed (WS), sea surface temperature (SST), sea surface air temperature, and relative humidity ( RH) simultaneously over the global oceans from Special Sensor Microwave Imager (SSM/I) observations. The retrieved geophysical parameters are used to estimate the surface latent heat flux and sensible heat flux using a bulk method over the global oceans. The neural network is trained and validated with the matchups of SSM/I overpasses and National Data Buoy Center buoys under both clear and cloudy weather conditions. In addition, the data acquired by the 85.5-GHz channels of SSM/I are used as the input variables of the neural network to improve its performance. The root-mean-square (rms) errors between the estimated WS, SST, sea surface air temperature, and RH from SSM/I observations and the buoy measurements are 1.48 m s(-1), 1.54 degrees C, 1.47 degrees C, and 7.85, respectively. The rms errors between the estimated latent and sensible heat fluxes from SSM/I observations and the Xisha Island ( in the South China Sea) measurements are 3.21 and 30.54 W m(-2), whereas those between the SSM/ I estimates and the buoy data are 4.9 and 37.85 W m(-2), respectively. Both of these errors ( those for WS, SST, and sea surface air temperature, in particular) are smaller than those by previous retrieval algorithms of SSM/ I observations over the global oceans. Unlike previous methods, the present algorithm is capable of producing near-real-time estimates of surface latent and sensible heat fluxes for the global oceans from SSM/I data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new wave retrieval method for the Along-Track Interferometric Synthetic Aperture Radar (AT-InSAR) phase image is presented. The new algorithm, named parametric retrieval algorithm (PRA), uses the full nonlinear mapping relations. It differs from previous retrieval algorithms in that it does not require a priori information about the sea state or the wind vector from scatterometer data. Instead, it combines the observed AT-InSAR phase spectrum and assumed wind vector to estimate the wind sea spectrum. The method has been validated using several C-band and X-band HH-polarized AT-InSAR observations collocated with spectral buoy measurements. In this paper, X-band and C-band HH-polarized AT-InSAR phase images of ocean waves are first used to study AT-InSAR wave imaging fidelity. The resulting phase spectra are quantitatively compared with forward-mapped in situ directional wave spectra collocated with the AT-InSAR observations. Subsequently, we combine the parametric retrieval algorithm (PRA) with X-band and C-band HH-polarized AT-InSAR phase images to retrieve ocean wave spectra. The results show that the ocean wavelengths, wave directions, and significant wave heights estimated from the retrieved ocean wave spectra are in agreement with the buoy measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C band RADARSAT-2 fully polarimetric (fine quad-polarization mode, HH+VV+HV+VH) synthetic aperture radar (SAR) images are used to validate ocean surface waves measurements using the polarimetric SAR wave retrieval algorithm, without estimating the complex hydrodynamic modulation transfer function, even under large radar incidence angles. The linearly polarized radar backscatter cross sections (RBCS) are first calculated with the copolarization (HH, VV) and cross-polarization (HV, VH) RBCS and the polarization orientation angle. Subsequently, in the azimuth direction, the vertically and linearly polarized RBCS are used to measure the wave slopes. In the range direction, we combine horizontally and vertically polarized RBCS to estimate wave slopes. Taken together, wave slope spectra can be derived using estimated wave slopes in azimuth and range directions. Wave parameters extracted from the resultant wave slope spectra are validated with colocated National Data Buoy Center (NDBC) buoy measurements (wave periods, wavelengths, wave directions, and significant wave heights) and are shown to be in good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (H-s/lambda), the baseline (2B) and incident angle (theta) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SAR phase image spectral turns towards the range direction, even if the real ocean wave direction is 30 degrees. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H-s/lambda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to measure ocean wave slope spectra using fully polarimetric synthetic aperture radar (POLSAR) data was developed without the need for a complex hydrodynamic modulation transform function. There is no explicit use of a hydrodynamic modulation transfer function. This function is not clearly known and is based on hydrodynamic assumptions. The method is different from those developed by Schuler and colleagues or Pottier but complements their methods. The results estimated from NASA Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) C-band polarimetric SAR data show that the ocean wavelength, wave direction, and significant wave height are in agreement with buoy measurements. The proposed method can be employed by future satellite missions such as RADARSAT-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed. Two experiments into the use of the radar system were carried out at two sites, respectively, for calibration process in Zhangzi Island of the Yellow Sea, and for validation in the Yellow Sea and South China Sea. Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method. The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy. The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy. In particular, it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters, especially in detecting the significant wave height below 1.0 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gemstone Team WAVES (Water and Versatile Energy Systems)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Continuous Plankton Recorder Survey has operated in the North Atlantic and North Sea since 1931, providing a unitque multi-decadal dataset of plankton abundance. Over the period since 1931 technology has advanced and the system for storing the CPR data has developed considerably. From 1969 an electronic database was developed to store the results of CPR analysis. Since that time the CPR database has undergone a number of changes due to performance related factors such as processor speed and disk capacity as well as economic factors such as the cost of software. These issues have been overcome and the system for storing and retrieving the data has become more user friendly at every development stage.