378 resultados para NEUROGENIC NEUROPROTECTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To assess the effect of transcutaneous electrical nerve stimulation (TENS) for treating refractory overactive bladder syndrome (OAB). PATIENTS AND METHODS: A consecutive series of 42 patients treated with TENS for refractory OAB was prospectively investigated at an academic tertiary referral centre. Effects were evaluated using bladder diary for at least 48 h and satisfaction assessment at baseline, after 12 weeks of TENS treatment, and at the last known follow-up. Adverse events related to TENS were also assessed. RESULTS: Mean age of the 42 patients (25 women, 17 men) was 48 years (range, 18-76). TENS was successful following 12 weeks of treatment in 21 (50 %) patients, and the positive effect was sustained during a mean follow-up of 21 months (range, 6-83 months) in 18 patients. Following 12 weeks of TENS treatment, mean number of voids per 24 h decreased significantly from 15 to 11 (p < 0.001) and mean voided volume increased significantly from 160 to 230 mL (p < 0.001). In addition, TENS completely restored continence in 7 (39 %) of the 18 incontinent patients. Before TENS, all 42 patients were dissatisfied or very dissatisfied; following 12 weeks of TENS treatment, 21 (50 %) patients felt satisfied or very satisfied (p < 0.001). No adverse events related to TENS were noted. CONCLUSIONS: TENS seems to be an effective and safe treatment for refractory OAB warranting randomized, placebo-controlled trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400μl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomon®' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute central nervous system (CNS) injuries such as spinal cord injury, traumatic brain injury, autoimmune encephalomyelitis, and ischemic stroke are associated with significant morbidity, mortality, and health care costs worldwide. Preliminary research has shown potential neuroprotection associated with adult tissue derived stem/progenitor cell based therapies. While initial research indicated that engraftment and transdifferentiation into neural cells could explain the observed benefit, the exact mechanism remains controversial. A second hypothesis details localized stem/progenitor cell engraftment with alteration of the loco-regional milieu; however, the limited rate of cell engraftment makes this theory less likely. There is a growing amount of preclinical data supporting the idea that, after intravenous injection, stem/progenitor cells interact with immunologic cells located in organ systems distant to the CNS, thereby altering the systemic immunologic/inflammatory response. Such distant cell "bioreactors" could modulate the observed post-injury pro-inflammatory environment and lead to neuroprotection. In this review, we discuss the current literature detailing the above mechanisms of action for adult stem/progenitor cell based therapies in the CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latrepirdine (Dimebon; dimebolin) is a neuroactive compound that was associated with enhanced cognition, neuroprotection and neurogenesis in laboratory animals, and has entered phase II clinical trials for both Alzheimer's disease and Huntington's disease (HD). Based on recent indications that latrepirdine protects cells against cytotoxicity associated with expression of aggregatable neurodegeneration-related proteins, including Aβ42 and γ-synuclein, we sought to determine whether latrepirdine offers protection to Saccharomyces cerevisiae. We utilized separate and parallel expression in yeast of several neurodegeneration-related proteins, including α-synuclein (α-syn), the amyotrophic lateral sclerosis-associated genes TDP43 and FUS, and the HD-associated protein huntingtin with a 103 copy-polyglutamine expansion (HTT gene; htt-103Q). Latrepirdine effects on α-syn clearance and toxicity were also measured following treatment of SH-SY5Y cells or chronic treatment of wild-type mice. Latrepirdine only protected yeast against the cytotoxicity associated with α-syn, and this appeared to occur via induction of autophagy. We further report that latrepirdine stimulated the degradation of α-syn in differentiated SH-SY5Y neurons, and in mouse brain following chronic administration, in parallel with elevation of the levels of markers of autophagic activity. Ongoing experiments will determine the utility of latrepirdine to abrogate α-syn accumulation in transgenic mouse models of α-syn neuropathology. We propose that latrepirdine may represent a novel scaffold for discovery of robust pro-autophagic/anti-neurodegeneration compounds, which might yield clinical benefit for synucleinopathies including Parkinson's disease, Lewy body dementia, rapid eye movement (REM) sleep disorder and/or multiple system atrophy, following optimization of its pro-autophagic and pro-neurogenic activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Sacral neuromodulation has become a well-established and widely accepted treatment for refractory non-neurogenic lower urinary tract dysfunction, but its value in patients with a neurological cause is unclear. Although there is evidence indicating that sacral neuromodulation may be effective and safe for treating neurogenic lower urinary tract dysfunction, the number of investigated patients is low and there is a lack of randomized controlled trials. METHODS AND DESIGN This study is a prospective, randomized, placebo-controlled, double-blind multicenter trial including 4 sacral neuromodulation referral centers in Switzerland. Patients with refractory neurogenic lower urinary tract dysfunction are enrolled. After minimally invasive bilateral tined lead placement into the sacral foramina S3 and/or S4, patients undergo prolonged sacral neuromodulation testing for 3-6 weeks. In case of successful (defined as improvement of at least 50% in key bladder diary variables (i.e. number of voids and/or number of leakages, post void residual) compared to baseline values) prolonged sacral neuromodulation testing, the neuromodulator is implanted in the upper buttock. After a 2 months post-implantation phase when the neuromodulator is turned ON to optimize the effectiveness of neuromodulation using sub-sensory threshold stimulation, the patients are randomized in a 1:1 allocation in sacral neuromodulation ON or OFF. At the end of the 2 months double-blind sacral neuromodulation phase, the patients have a neuro-urological re-evaluation, unblinding takes place, and the neuromodulator is turned ON in all patients. The primary outcome measure is success of sacral neuromodulation, secondary outcome measures are adverse events, urodynamic parameters, questionnaires, and costs of sacral neuromodulation. DISCUSSION It is of utmost importance to know whether the minimally invasive and completely reversible sacral neuromodulation would be a valuable treatment option for patients with refractory neurogenic lower urinary tract dysfunction. If this type of treatment is effective in the neurological population, it would revolutionize the management of neurogenic lower urinary tract dysfunction. TRIAL REGISTRATION TRIAL REGISTRATION NUMBER http://www.clinicaltrials.gov; Identifier: NCT02165774.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To conduct a survey across European cardiac centres to evaluate the methods used for cerebral protection during aortic surgery involving the aortic arch. METHODS All European centres were contacted and surgeons were requested to fill out a short, comprehensive questionnaire on an internet-based platform. One-third of more than 400 contacted centres completed the survey correctly. RESULTS The most preferred site for arterial cannulation is the subclavian-axillary, both in acute and chronic presentation. The femoral artery is still frequently used in the acute condition, while the ascending aorta is a frequent second choice in the case of chronic presentation. Bilateral antegrade brain perfusion is chosen by the majority of centres (2/3 of cases), while retrograde perfusion or circulatory arrest is very seldom used and almost exclusively in acute clinical presentation. The same pumping system of the cardio pulmonary bypass is most of the time used for selective cerebral perfusion, and the perfusate temperature is usually maintained between 22 and 26°C. One-third of the centres use lower temperatures. Perfusate flow and pressure are fairly consistent among centres in the range of 10-15 ml/kg and 60 mmHg, respectively. In 60% of cases, barbiturates are added for cerebral protection, while visceral perfusion still receives little attention. Regarding cerebral monitoring, there is a general tendency to use near-infrared spectroscopy associated with bilateral radial pressure measurement. CONCLUSIONS These data represent a snapshot of the strategies used for cerebral protection during major aortic surgery in current practice, and may serve as a reference for standardization and refinement of different approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delaying clinical disease onset would greatly reduce neurodegenerative disease burden, but the mechanisms influencing early preclinical progression are poorly understood. Here, we show that in mouse models of familial motoneuron (MN) disease, SOD1 mutants specifically render vulnerable MNs dependent on endogenous neuroprotection signaling involving excitability and mammalian target of rapamycin (mTOR). The most vulnerable low-excitability FF MNs already exhibited evidence of pathology and endogenous neuroprotection recruitment early postnatally. Enhancing MN excitability promoted MN neuroprotection and reversed misfolded SOD1 (misfSOD1) accumulation and MN pathology, whereas reducing MN excitability augmented misfSOD1 accumulation and accelerated disease. Inhibiting metabotropic cholinergic signaling onto MNs reduced ER stress, but enhanced misfSOD1 accumulation and prevented mTOR activation in alpha-MNs. Modulating excitability and/or alpha-MN mTOR activity had comparable effects on the progression rates of motor dysfunction, denervation, and death. Therefore, excitability and mTOR are key endogenous neuroprotection mechanisms in motoneurons to counteract clinically important disease progression in ALS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dysfunction and loss of neurons are the major characteristics of CNS disorders that include stroke, multiple sclerosis, and Alzheimer's disease. Activation of the Toll-like receptor 7 by extracellular microRNA let-7, a highly expressed microRNA in the CNS, induces neuronal cell death. Let-7 released from injured neurons and immune cells acts on neighboring cells, exacerbating CNS damage. Here we show that a synthetic peptide analogous to the mammalian PreImplantation factor (PIF) secreted by developing embryos and which is present in the maternal circulation during pregnancy inhibits the biogenesis of let-7 in both neuronal and immune cells of the mouse. The synthetic peptide, sPIF, destabilizes KH-type splicing regulatory protein (KSRP), a key microRNA-processing protein, in a Toll-like receptor 4 (TLR4)-dependent manner, leading to decreased production of let-7. Furthermore, s.c. administration of sPIF into neonatal rats following hypoxic-ischemic brain injury robustly rescued cortical volume and number of neurons and decreased the detrimental glial response, as is consistent with diminished levels of KSRP and let-7 in sPIF-treated brains. Our results reveal a previously unexpected mechanism of action of PIF and underscore the potential clinical utility of sPIF in treating hypoxic-ischemic brain damage. The newly identified PIF/TLR4/KSRP/let-7 regulatory axis also may operate during embryo implantation and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. DESIGN Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. SETTINGS Basic sleep research laboratory. MEASUREMENTS AND RESULTS Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. CONCLUSION Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Neurogenic thoracic outlet syndrome is an underestimated cause of brachial weakness and pain. The subclavius posticus muscle (SPM) is an aberrant muscle originating from the medial aspect of the first rib reaching to superior border of the scapula, which may cause, depending on its activation, dynamic compression of the brachial plexus. CASE PRESENTATION In the present study, we report about a 32-year-old male caucasian patient with weakness in radial deviation of his left hand. An isolated macrodactyly of his left middle finger had been operated twice. Electroneurography showed a carpal-tunnel-syndrome (CTS) on the left side. MRI of the brachial plexus revealed an additional muscle in the costoclavicular space, identified as SPM. To our knowledge, this is the second case report of a neurogenic thoracic outlet syndrome due to SPM, and the first case described with isolated macrodactyly and CTS in the same patient. CONCLUSION If complaints about hand weakness are only reported in cases of distinct hand positions, a dynamic compression of the brachial plexus by SPM may be the cause. A neurogenic thoracic outlet syndrome may facilitate the development of CTS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Survivors of premature birth suffer from long term disabilities. Synthetic PreImplantation Factor (sPIF*) modulates inflammatory responses and reverses neuroinflammation. Proteinkinase A (PKA) and protein kinase C (PKC) are crucial signaling molecules. PKA up-regulates IL-10 and brain-derived neurotrophic factor (BDNF) expression, which exert neuroprotective effects. Anti-apoptotic phosphorylation of Bad is mediated by PKA. PKC phosphorylates GAP-43, a marker for neuronal plasticity and structural recovery. We explored sPIF protective role in neuronal (N2a) cells and in a rat model of encephalopathy of prematurity. *proprietary. STUDY DESIGN: Cells were subjected to LPS and treated with sPIF or scrambled sPIF. Neonatal rats (postnatal day 3: P3) were subjected to LPS, ligation of carotid artery, and hypoxia (8% O2, 65min; n¼ 30). sPIF (0.75mg/kg twice daily) was injected (P6-13) and brains harvested at P13. sPIF’s potential and mechanisms were evaluated using immunohistochemistry, ELISA, Western Blot, and qRT-PCR. Data were analyzed using two-tailed Student’s t-test. P<0.05 wasconsidered statistically significant. RESULTS: In vitro sPIF increased PKA/PKC activity in time dependent manner (Fig. 1A). sPIF induced higher IL-10, BDNF, and GAP-43 and lower CASP3, BAD, and TNF-a mRNA levels (Fig. 1B,C). sPIF increased pGap-43/Gap-43 and decreased pBad/Bad ratio while decreasing Bad (Fig. 1 D,E). In brain tissue sPIF treatment resulted in rescued neuronal number (NeuN positive cells) and reduced apoptosis (Casp-3 positive cells) with decreased glial (Iba-1 positive cells) activation (Fig. 2A,B). The Iba-1 morphology changed from predominantly amoeboid to ramified state. Additionally sPIF increased IL-10 mRNA levels (Fig. 2C) and pGap-43/Gap-43 ratio (Fig. 2D). CONCLUSION: sPIF modulates PKA/PKC pathways reducing apoptosis and inflammatory responses while increasing neuronal plasticity and survival. The identified PKA/PKC regulatory axis strengthens the potential of sPIF in reducing the burden of prematurity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT Tibial nerve stimulation (TNS) is a promising therapy for non-neurogenic lower urinary tract dysfunction and might also be a valuable option for patients with an underlying neurological disorder. OBJECTIVE We systematically reviewed all available evidence on the efficacy and safety of TNS for treating neurogenic lower urinary tract dysfunction (NLUTD). EVIDENCE ACQUISITION The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. EVIDENCE SYNTHESIS After screening 1943 articles, 16 studies (4 randomized controlled trials [RCTs], 9 prospective cohort studies, 2 retrospective case series, and 1 case report) enrolling 469 patients (283 women and 186 men) were included. Five studies reported on acute TNS and 11 on chronic TNS. In acute and chronic TNS, the mean increase of maximum cystometric capacity ranged from 56 to 132mL and from 49 to 150mL, and the mean increase of bladder volume at first detrusor overactivity ranged from 44 to 92mL and from 93 to 121mL, respectively. In acute and chronic TNS, the mean decrease of maximum detrusor pressure during the storage phase ranged from 5 to 15cm H2O and from 4 to 21cm H2O, respectively. In chronic TNS, the mean decrease in number of voids per 24h, in number of leakages per 24h, and in postvoid residual ranged from 3 to 7, from 1 to 4, and from 15 to 55mL, respectively. No TNS-related adverse events have been reported. Risk of bias and confounding was high in most studies. CONCLUSIONS Although preliminary data of RCTs and non-RCTs suggest TNS might be effective and safe for treating NLUTD, the evidence base is poor, derived from small, mostly noncomparative studies with a high risk of bias and confounding. More reliable data from well-designed RCTs are needed to reach definitive conclusions. PATIENT SUMMARY Early data suggest tibial nerve stimulation might be effective and safe for treating neurogenic lower urinary tract dysfunction, but more reliable evidence is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT Transcutaneous electrical nerve stimulation (TENS) is a promising therapy for non-neurogenic lower urinary tract dysfunction and might also be a valuable option in patients with an underlying neurological disorder. OBJECTIVE We systematically reviewed all available evidence on the efficacy and safety of TENS for treating neurogenic lower urinary tract dysfunction. EVIDENCE ACQUISITION The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. EVIDENCE SYNTHESIS After screening 1943 articles, 22 studies (two randomised controlled trials, 14 prospective cohort studies, five retrospective case series, and one case report) enrolling 450 patients were included. Eleven studies reported on acute TENS and 11 on chronic TENS. In acute TENS and chronic TENS, the mean increase of maximum cystometric capacity ranged from 69ml to 163ml and from 4ml to 156ml, the mean change of bladder volume at first detrusor overactivity from a decrease of 13ml to an increase of 175ml and from an increase of 10ml to 120ml, a mean decrease of maximum detrusor pressure at first detrusor overactivity from 18 cmH20 to 72 cmH20 and 8 cmH20, and a mean decrease of maximum storage detrusor pressure from 20 cmH20 to 58 cmH2O and from 3 cmH20 to 8 cmH2O, respectively. In chronic TENS, a mean decrease in the number of voids and leakages per 24h ranged from 1 to 3 and from 0 to 4, a mean increase of maximum flow rate from 2ml/s to 7ml/s, and a mean change of postvoid residual from an increase of 26ml to a decrease of 85ml. No TENS-related serious adverse events have been reported. Risk of bias and confounding was high in most studies. CONCLUSIONS Although preliminary data suggest TENS might be effective and safe for treating neurogenic lower urinary tract dysfunction, the evidence base is poor and more reliable data from well-designed randomised controlled trials are needed to make definitive conclusions. PATIENT SUMMARY Early data suggest that transcutaneous electrical nerve stimulation might be effective and safe for treating neurogenic lower urinary tract dysfunction, but more reliable evidence is required.