459 resultados para NAD glycohydrolase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Errata slip inserted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bound with His PszczoÅy i bartnictwo w Polszcze. PoznaÅ, 1856.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidant vitamins C and E have protective properties in genetic hypertension associated with enhanced oxidative stress. This study investigated whether vitamins C and/or E modulate vascular function by regulating enzymatic activities of endothelial nitric oxide synthase (eNOS) and NAD(P)H oxidase using thoracic aortas of 20- to 22-week-old male spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar-Kyoto rats (WKY). SHR aortas had impaired relaxant responses to acetylcholine but not to sodium nitroprusside, despite an 2-fold increase in eNOS activity and NO release. The levels of superoxide anion (O2 ), a potent NO scavenger, and NAD(P)H oxidase activity were also 2-fold higher in SHR aortas. Mechanical but not pharmacological inactivation of endothelium (by rubbing and 100 mol/L L-NAME, respectively) significantly abrogated O2 in both strains. Treatments of SHR aortas with NAD(P)H oxidase inhibitors, namely diphenyleneiodinium and apocynin, significantly diminished O2 production. The incubation of SHR aortas with different concentrations of vitamin C (10 to 100 mol/L) and specifically with high concentrations of vitamin E (100 mol/L) improved endothelial function, reduced superoxide production as well as NAD(P)H oxidase activity, and increased eNOS activity and NO generation in SHR aortas to the levels observed in vitamin C- and E-treated WKY aortas. Our results reveal endothelial NAD(P)H oxidase as the major source of vascular O2 in SHR and also show that vitamins C and E are critical in normalizing genetic endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) including nitric oxide (NO) and superoxide anion (O2-) are associated with cell migration, proliferation and many growth-related diseases. The objective of this study was to determine whether there was a reciprocal relationship between rat coronary microvascular endothelial cell (CMEC) growth and activity/expressions (mRNA and protein) of endothelial NO synthase (eNOS) and NAD(P)H oxidase enzymes. Proliferating namely, 50% confluent CMEC possessed approximately three-fold increased activity and expression of both enzymes compared to 100% confluent cells. Treatment of CMEC with an inhibitor of eNOS (L-NAME, 100M) increased cell proliferation as assessed via three independent methods i.e. cell counting, determination of total cellular protein levels and [3H]thymidine incorporation. Similarly, treatment of CMEC with pyrogallol (0.3-3 mM), a superoxide anion (O2-)- generator, also increased CMEC growth while spermine NONOate (SpNO), a NO donor, significantly reduced cell growth. Co-incubation of CMEC with a cell permeable superoxide dismutase mimetic (Mn-III-tetrakis-4-benzoic acid-porphyrin; MnTBAP) plus either pyrogallol or NO did not alter cell number and DNA synthesis thereby dismissing the involvement of peroxynitrite (OONO-) in CMEC proliferation. Specific inhibitors of NAD(P)H oxidase but not other ROS-generating enzymes including cyclooxygenase and xanthine oxidase, attenuated cell growth. Transfection of CMEC with antisense p22-phox cDNA, a membrane-bound component of NAD(P)H oxidase, resulted in substantial reduction in [3H]thymidine incorporation, total cellular protein levels and expression of p22-phox protein. These data demonstrate a cross-talk between CMEC growth and eNOS and NAD(P)H oxidase enzyme activity and expression, thus suggesting that the regulation of these enzymes may be critical in preventing the initiation and/or progression of coronary atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

W artykule porównano dwa raporty Najwyższej Izby Kontroli, która przeprowadziÅa kontrole organów paÅstwowych zobligowane do wykonywania nadzoru nad funkcjonowaniem ferm zwierzÄt. Wnioski przedstawione przez NajwyższÄ IzbÄ Kontroli wykazaÅy, że nadzór nad funkcjonowaniem owych ferm nie jest wystarczajÄco skuteczny i pozostawia wiele wÄtpliwoÅci co do dziaÅalnoÅci organów paÅstwowych. W przytaczanych raportach zostaÅa opisana niestabilna sytuacja polskich organów kontroli, która stawia pod znakiem zapytania nie tylko dziaÅalnoÅÄ wymienionych organów, ale także kondycjÄ caÅej struktury administracyjnej i kontrolnej. Ponadto wnioski zawarte w raportach wykazaÅy, że podmioty uzyskujÄce zgodÄ na prowadzenie danych instalacji Årodowiskowych nie zawsze speÅniajÄ wymogi zwiÄzane z ochronÄ Årodowiska, bowiem dokonujÄ niekorzystnego podziaÅu instalacji. Rozwój nowoczesnego rolnictwa i jego intensyfikacja może powodowaÄ szereg zagrożeÅ Årodowiskowych, gÅównie dla mieszkaÅców znajdujÄcych siÄ w bezpoÅrednim sÄsiedztwie ferm utrzymujÄcych zwierzÄta. PrzemysÅowa hodowla zwierzÄt nie jest obojÄtna dla jakoÅci i warunków życia ludzi mieszkajÄcych w bliskim sÄsiedztwie ferm za sprawÄ uciÄżliwych odorów oraz zanieczyszczeÅ wód, w tym w wyniku przenawożenia gleb, prowadzÄcych do zagrożeÅ chemicznych i mikrobiologicznych. Skutkiem wystÄpujÄcych uciÄżliwoÅci sÄ protesty lokalnych spoÅeczeÅstw. Brak odpowiedniego nadzoru zagraża również rodzimym gatunkom zwierzÄt, wyniszczajÄc zwÅaszcza ptaki i niektóre ssaki.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WydziaŠStudiów Edukacyjnych

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digitalizacja i deponowanie archiwalnych zeszytów RPEiS sfinansowane przez MNiSW w ramach realizacji umowy nr 541/P-DUN/2016