457 resultados para NAD
Resumo:
Bound with His Pszczoły i bartnictwo w Polszcze. Poznań, 1856.
Resumo:
Mode of access: Internet.
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Antioxidant vitamins C and E have protective properties in genetic hypertension associated with enhanced oxidative stress. This study investigated whether vitamins C and/or E modulate vascular function by regulating enzymatic activities of endothelial nitric oxide synthase (eNOS) and NAD(P)H oxidase using thoracic aortas of 20- to 22-week-old male spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar-Kyoto rats (WKY). SHR aortas had impaired relaxant responses to acetylcholine but not to sodium nitroprusside, despite an 2-fold increase in eNOS activity and NO release. The levels of superoxide anion (O2 ), a potent NO scavenger, and NAD(P)H oxidase activity were also 2-fold higher in SHR aortas. Mechanical but not pharmacological inactivation of endothelium (by rubbing and 100 mol/L L-NAME, respectively) significantly abrogated O2 in both strains. Treatments of SHR aortas with NAD(P)H oxidase inhibitors, namely diphenyleneiodinium and apocynin, significantly diminished O2 production. The incubation of SHR aortas with different concentrations of vitamin C (10 to 100 mol/L) and specifically with high concentrations of vitamin E (100 mol/L) improved endothelial function, reduced superoxide production as well as NAD(P)H oxidase activity, and increased eNOS activity and NO generation in SHR aortas to the levels observed in vitamin C- and E-treated WKY aortas. Our results reveal endothelial NAD(P)H oxidase as the major source of vascular O2 in SHR and also show that vitamins C and E are critical in normalizing genetic endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities.
Resumo:
The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.
Resumo:
Reactive oxygen species (ROS) including nitric oxide (NO) and superoxide anion (O2-) are associated with cell migration, proliferation and many growth-related diseases. The objective of this study was to determine whether there was a reciprocal relationship between rat coronary microvascular endothelial cell (CMEC) growth and activity/expressions (mRNA and protein) of endothelial NO synthase (eNOS) and NAD(P)H oxidase enzymes. Proliferating namely, 50% confluent CMEC possessed approximately three-fold increased activity and expression of both enzymes compared to 100% confluent cells. Treatment of CMEC with an inhibitor of eNOS (L-NAME, 100M) increased cell proliferation as assessed via three independent methods i.e. cell counting, determination of total cellular protein levels and [3H]thymidine incorporation. Similarly, treatment of CMEC with pyrogallol (0.3-3 mM), a superoxide anion (O2-)- generator, also increased CMEC growth while spermine NONOate (SpNO), a NO donor, significantly reduced cell growth. Co-incubation of CMEC with a cell permeable superoxide dismutase mimetic (Mn-III-tetrakis-4-benzoic acid-porphyrin; MnTBAP) plus either pyrogallol or NO did not alter cell number and DNA synthesis thereby dismissing the involvement of peroxynitrite (OONO-) in CMEC proliferation. Specific inhibitors of NAD(P)H oxidase but not other ROS-generating enzymes including cyclooxygenase and xanthine oxidase, attenuated cell growth. Transfection of CMEC with antisense p22-phox cDNA, a membrane-bound component of NAD(P)H oxidase, resulted in substantial reduction in [3H]thymidine incorporation, total cellular protein levels and expression of p22-phox protein. These data demonstrate a cross-talk between CMEC growth and eNOS and NAD(P)H oxidase enzyme activity and expression, thus suggesting that the regulation of these enzymes may be critical in preventing the initiation and/or progression of coronary atherosclerosis.
Resumo:
W artykule porównano dwa raporty Najwyższej Izby Kontroli, która przeprowadziła kontrole organów państwowych zobligowane do wykonywania nadzoru nad funkcjonowaniem ferm zwierząt. Wnioski przedstawione przez Najwyższą Izbę Kontroli wykazały, że nadzór nad funkcjonowaniem owych ferm nie jest wystarczająco skuteczny i pozostawia wiele wątpliwości co do działalności organów państwowych. W przytaczanych raportach została opisana niestabilna sytuacja polskich organów kontroli, która stawia pod znakiem zapytania nie tylko działalność wymienionych organów, ale także kondycję całej struktury administracyjnej i kontrolnej. Ponadto wnioski zawarte w raportach wykazały, że podmioty uzyskujące zgodę na prowadzenie danych instalacji środowiskowych nie zawsze spełniają wymogi związane z ochroną środowiska, bowiem dokonują niekorzystnego podziału instalacji. Rozwój nowoczesnego rolnictwa i jego intensyfikacja może powodować szereg zagrożeń środowiskowych, głównie dla mieszkańców znajdujących się w bezpośrednim sąsiedztwie ferm utrzymujących zwierzęta. Przemysłowa hodowla zwierząt nie jest obojętna dla jakości i warunków życia ludzi mieszkających w bliskim sąsiedztwie ferm za sprawą uciążliwych odorów oraz zanieczyszczeń wód, w tym w wyniku przenawożenia gleb, prowadzących do zagrożeń chemicznych i mikrobiologicznych. Skutkiem występujących uciążliwości są protesty lokalnych społeczeństw. Brak odpowiedniego nadzoru zagraża również rodzimym gatunkom zwierząt, wyniszczając zwłaszcza ptaki i niektóre ssaki.
Resumo:
Wydział Studiów Edukacyjnych
Resumo:
Digitalizacja i deponowanie archiwalnych zeszytów RPEiS sfinansowane przez MNiSW w ramach realizacji umowy nr 541/P-DUN/2016
Resumo:
info:eu-repo/semantics/publishedVersion
Resumo:
Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.
Resumo:
Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca(2+) mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca(2+) signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca(2+) signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.