958 resultados para N-methyl-d-aspartate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

D-Serine, the endogenous coagonist of N-methyl-D-aspartate receptors (NMDARs), is considered to be an important gliotransmitter, and is essential for the induction of long-term potentiation. However, less is known about the role of D-serine in another for

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to investigate the effects of cytochalasin B (20 μM) on the uptake of 3-O-[(14)C]-methyl-D-glucose or D-[U-(14)C]glucose (8.3 mM each) by BRIN-BD11 cells. Taking into account the distribution space of tritiated water ((3)HOH), which was unexpectedly increased shortly after exposure of the cells to cytochalasin B and then progressively returned to its control values, and that of L-[1-(14)C]glucose, used as an extracellular marker, it was demonstrated that cytochalasin B caused a modest, but significant inhibition of the uptake of D-glucose and its non-metabolized analog by the BRIN-BD11 cells. These findings resemble those observed in acinar or ductal cells of the rat submaxillary gland and displayed a relative magnitude comparable to that found for the inhibition of D-glucose metabolism by cytochalasin B in purified pancreatic islet B cells. These findings reinforce the view that the primary site of action of cytochalasin B is located at the level of the plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic SLMVs is comparable to that in synaptic vesicles of excitatory nerve terminals (∼45 and ∼55 mM, respectively), whereas the D-serine level is about 6 mM. The vesicles are organized in small spaced clusters located near the astrocytic plasma membrane. Endoplasmic reticulum is regularly found in close vicinity to SLMVs, suggesting that astrocytes contain functional nanodomains, where a local Ca(2+) increase can trigger release of glutamate and/or D-serine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El receptor ionotrópico de glutamato activado por N-metil-D-aspartato (iGluR-NMDA) es un complejo macromolecular heteromultimérico constituido por entre 3 y 5 subunidades de tres diferentes tipos, a saber: NR1, NR2A-D y NR3A y B. Se ha demostrado su participación activa en prácticamente todos los procesos fisiológicos, patológicos e intermediarios de efectos farmacológicos que ocurren en las células de tejidos excitables, inclusive se ha reportado su presencia en otros tejidos no excitables. En el sistema nervioso central (SNC) participa en los procesos de aprendizaje, memoria, plasticidad, diferenciación, migración de la célula neural y apoptosis. Además, en los eventos de índole farmacológica se ha demostrado su intervención en excitotoxicidad, drogadicción y alcoholismo. Surge entonces la pregunta de cómo un mismo complejo macromolecular puede participar en tantos y tan diversos procesos. La revisión de literatura en la que se demuestra la interacción del iGluR-NMDA con proteínas de señalización, soporte, adaptadoras, moduladoras, de adhesión celular, de citoesqueleto y enzimas reporta un conjunto de más de 160 moléculas que participan en las cascadas que generan las señales a diferentes niveles de interacción y con diferentes sustratos. En este artículo se presenta un modelo predictivo estructural y funcional que permite distinguir, por lo menos, tres rutas diferenciadas de señalización.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Discutir o diagnóstico diferencial das encefalites além daquelas de etiologia infecciosa, e alertar os pediatras para a possibilidade do diagnóstico de encefalite anti-receptor N-metil-D-aspartato (rNMDA) na população pediátrica, destacando suas principais características clínicas. DESCRIÇÃO: Três pacientes apresentaram-se com uma síndrome neuropsiquiátrica inicial seguida de encefalopatia e transtornos de movimento. As características neuropsiquiátricas iniciais se desenvolveram ao longo de dias ou semanas, com mudanças comportamentais, ansiedade, confusão mental e regressão da fala. Em seguida, os pacientes evoluíram com distúrbios de movimento, caracterizados por coreoatetose ou distonia, acometendo a região orofacial e os membros. Após a exclusão das principais causas de encefalite, foram identificados anticorpos anti-rNMDA no soro e no líquido cefalorraquidiano. Não foram detectadas neoplasias durante a investigação etiológica. Os pacientes foram submetidos a imunossupressão, e dois deles tiveram uma recuperação neurológica completa. Um deles ainda apresenta uma postura distônica leve em um dos membros. COMENTÁRIOS: Os sinais clínicos de encefalite anti-rNMDA em crianças são semelhantes aos anteriormente descritos em adultos. Tumores geralmente não são detectados nessa idade. O diagnóstico de encefalite anti-rNMDA deve ser abordado após a exclusão de outras causas de encefalite na infância, como as de origem infecciosa. Pediatras devem estar atentos a essa condição autoimune passível de tratamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The putative catalytic domain (residues 81–401) of a predicted tomato protein with similarity to 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase of Escherichia coli was expressed in a recombinant E. coli strain. The protein was purified to homogeneity and was shown to catalyze the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2-C-methyl-d-erythritol at a rate of 33 μmol⋅mg−1⋅min−1. The structure of the reaction product, 4-diphosphocytidyl-2-C-methyl-d-erythritol 2-phosphate, was established by NMR spectroscopy. Divalent metal ions, preferably Mg2+, are required for activity. Neither the tomato enzyme nor the E. coli ortholog catalyzes the phosphorylation of isopentenyl monophosphate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an antibody highly specific for D-serine conjugated to glutaraldehyde, we have localized endogenous D-serine in rat brain. Highest levels of D-serine immunoreactivity occur in the gray matter of the cerebral cortex, hippocampus, anterior olfactory nucleus, olfactory tubercle, and amygdala. Localizations of D-serine immunoreactivity correlate closely with those of D-serine binding to the glycine modulatory site of the N-methyl-D-aspartate (NMDA) receptor as visualized by autoradiography and are inversely correlated to the presence of D-amino acid oxidase. D-Serine is enriched in process-bearing glial cells in neuropil with the morphology of protoplasmic astrocytes. In glial cultures of rat cerebral cortex, D-serine is enriched in type 2 astrocytes. The release of D-serine from these cultures is stimulated by agonists of non-NMDA glutamate receptors, suggesting a mechanism by which astrocyte-derived D-serine could modulate neurotransmission. D-Serine appears to be the endogenous ligand for the glycine site of NMDA receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Methods Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Results Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Conclusion Exposure to lead before and after birth can damage short-term and long-term memory ability of young rats and hippocampal ultrastructure. However, the current study does not provide evidence that the expression of rat hippocampal mGluR3 and mGluR7 can be altered by systemic administration of lead during gestation and lactation, which are informative for the field of lead-induced developmental neurotoxicity noting that it seems not to be worthwhile to include mGluR3 and mGluR7 in future studies. Background

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Post traumatic stress disorder (PTSD) and depressive disorder are over represented in combat veterans. Veterans with both disorders have an increased risk of suicide. The nitric oxide synthase 1 adaptor protein (NOS1AP) gene, which modulates stress-evoked N-methyl-D-aspartate (NMDA) activity, was investigated in combat veterans. Methods A comprehensive genetic analysis of NOS1AP and its association with PTSD was investigated in Vietnam combat veterans with PTSD (n=121) and a group of healthy control individuals (n=237). PTSD patients were assessed for symptom severity and level of depression using the Mississippi Scale for Combat-Related PTSD and the Beck Depression Inventory-II (BDI). Results The G allele of NOS1AP SNP rs386231 was significantly associated with PTSD (p = 0.002). Analysis of variance revealed significant differences in BDI-II and Mississippi scores between genotypes for rs386231 with the GG genotype associated with increased severity of depression (p = 0.002 F = 6.839) and higher Mississippi Scale for Combat-Related PTSD scores (p = 0.033). Haplotype analysis revealed that the C/G haplotype (rs451275/rs386231) was significantly associated with PTSD (p = 0.001). Limitations The sample sizes in our study were not sufficient to detect SNP associations with very small effects. In addition the study was limited by its cross sectional design. Conclusions This is the first study reporting that a variant of the NOS1AP gene is associated with PTSD. Our data also suggest that a genetic variant in NOS1AP may increase the susceptibility to severe depression in patients with PTSD and increased risk for suicide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synapses onto dendritic spines in the lateral amygdala formed by afferents from the auditory thalamus represent a site of plasticity in Pavlovian fear conditioning. Previous work has demonstrated that thalamic afferents synapse onto LA spines expressing glutamate receptor (GluR) subunits, but the GluR subunit distribution at the synapse and within the cytoplasm has not been characterized. Therefore, we performed a quantitative analysis for α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits GluR2 and GluR3 and N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2B by combining anterograde labeling of thalamo-amygdaloid afferents with postembedding immunoelectron microscopy for the GluRs in adult rats. A high percentage of thalamo- amygdaloid spines was immunoreactive for GluR2 (80%), GluR3 (83%), and NR1 (83%), while a smaller proportion of spines expressed NR2B (59%). To compare across the various subunits, the cytoplasmic to synaptic ratios of GluRs were measured within thalamo-amygdaloid spines. Analyses revealed that the cytoplasmic pool of GluR2 receptors was twice as large compared to the GluR3, NR1, and NR2B subunits. Our data also show that in the adult brain, the NR2B subunit is expressed in the majority of in thalamo-amygdaloid spines and that within these spines, the various GluRs are differentially distributed between synaptic and non-synaptic sites. The prevalence of the NR2B subunit in thalamo-amygdaloid spines provides morphological evidence supporting its role in the fear conditioning circuit while the differential distribution of the GluR subtypes may reflect distinct roles for their involvement in this circuitry and synaptic plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both tyrosine hydroxylase-positive fibres from the mesolimbic dopamine system and amygdala projection fibres from the basolateral nucleus are known to terminate heavily in the nucleus accumbens. Caudal amygdala fibres travelling dorsally via the stria terminalis project densely to the nucleus accumbens shell, especially in the dopamine rich septal hook. The amygdala has been associated with the recognition of emotionally relevant stimuli while the mesolimbic dopamine system is implicated with reward mechanisms. There is behavioural and electrophysiological evidence that the amygdala input to the nucleus accumbens is modulated by the mesolimbic dopamine input, but it is not known how these pathways interact anatomically within the nucleus accumbens. Using a variety of neuroanatomical techniques including anterograde and retrograde tracing, immunocytochemistry and intracellular filling, we have demonstrated convergence of these inputs on to medium-sized spiny neurons. The terminals of the basolateral amygdala projection make asymmetrical synapses predominantly on the heads of spines which also receive on their necks or adjacent dendrites, symmetrical synaptic input from the mesolimbic dopamine system. Some of these neurons have also been identified as projection neurons, possibly to the ventral pallidum. We have shown a synaptic level how dopamine is positioned to modulate excitatory limbic input in the nucleus accumbens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the key neuron-to-neuron interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. However, the signal transduction mechanisms by which stress mediates its lasting effects on synapse transmission and on memory are not fully understood. A key component of the stress response is the increased secretion of adrenal steroids. Adrenal steroids (e.g., cortisol) bind to genomic mineralocorticoid and glucocorticoid receptors (gMRs and gGRs) in the cytosol. In addition, they may act through membrane receptors (mMRs and mGRs), and signal transduction through these receptors may allow for rapid modulation of synaptic transmission as well as modulation of membrane ion currents. mMRs increase synaptic and neuronal excitability; mechanisms include the facilitation of glutamate release through extracellular signal-regulated kinase signal transduction. In contrast, mGRs decrease synaptic and neuronal excitability by reducing calcium currents through N-methyl-D-aspartate receptors and voltage-gated calcium channels by way of protein kinase A- and G protein-dependent mechanisms. This body of functional data complements anatomical evidence localizing GRs to the postsynaptic membrane. Finally, accumulating data also suggest the possibility that mMRs and mGRs may show an inverted U-shaped dose response, whereby glutamatergic synaptic transmission is increased by low doses of corticosterone acting at mMRs and decreased by higher doses acting at mGRs. Thus, synaptic transmission is regulated by mMRs and mGRs, and part of the stress signaling response is a direct and bidirectional modulation of the synapse itself by adrenal steroids.