979 resultados para N,N-dimethyl-PE
Resumo:
Solid complexes of thiophosphoryl fluoride and thiophosphoryl chloride with dimethyl sulphoxide (DMSO) have been prepared and characterized.
Resumo:
Solid complexes of thiophosphoryl fluoride and thiophosphoryl chloride with dimethyl sulphoxide (DMSO) have been prepared and characterized.
Resumo:
C28H48N2Oa.H2 O, Mr=494.7, orthorhombic,P2~2~2~, a = 7.634 (2), b = 11.370 (2), c=34. 167 (4) A, V = 2966 (2) A 3, Z = 4, D m = 1.095,D x -- 1. 108 g cm -3, Mo Kct, 2 -- 0.7107 ,/k, ~ =0.43 cm -~, F(000) = 1088.0, T= 293 K, R = 0.061 for 1578 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is negligible (1/100th of the urea standard). The observed low second-order nonlinear response has been attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
The synthesis of 6-acetyl-2,2-dimethyl-8-methoxychromene (lc), a naturally occurring isomer of encecalin (la)h~s been described startilag from 2,2,6- trimethyl-8-methoxyclaromene (2e) which was obtained from creosol (4) in two steps involving condensation of the phenol with malic acid to the coumarin (3), followed by Grignard reaction with CHaMgI. The transformation of (2e) to the natural product (lc) was effeeted by oxidative dehydrogenation by DDQ of the 6-meth~r function to the formyl group (2f), Grignard reaction to the carbinol (2g) and finally its oxidation to the acetyl moiety (lc), the sequence of the essential steps schematically summarised as : Ar-CHs --* Ar-CHO --* Ar-CH (OH) CHs --* Ar---COCHs.
Resumo:
A new strategy for the total synthesis of methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate 4, a key intermediate in the synthesis of illudalanes, is reported. The key step in this strategy is a new method of preparation of indanones from tetralones. Thus, the furfurylidene derivative of 6-methoxy-3,4-dihydronaphthalen-1-(2H)-one is oxidised to the dicarboxylic acid 9a which is cyclodehydrated to methyl 7-methoxy-1-oxoindan-4-carboxylate 10. Similar reactions on the tetrahydronaphthalenone 25, obtained from 6-methoxy-1,2,3,4-tetrahydronaphthalene-7-carbaldehyde 11 by sequential transformations including a regiospecific benzylic oxidation resulted in the hexahydro-s-indacenone 4, thus completing a formal synthesis of illudinine 1.
Resumo:
Total syntheses of (±)-1,4-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol(11a), (±)-2,3-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol (11b), and (±)-3-methoxy-6,6-dimethyl-B-norestra-1,3,5(10)trien-17?-ol (11c), have been carried out starting from 4,7-dimethoxy-3,3-dimethylindan-1-one (1), 5,6-dimethoxy-3,3-dimethylindan-1-one (2), and 4?-methoxy-3-methylbut-2-enophenone (4), respectively. Generally, it is found that the intermediate 6,6-dimethyl-B-norestra-1,3,5(10),8-tetraen-17?-ols (10), on lithium�liquid ammonia reduction, yield a mixture of 8?,9?- and 8?,9?-trienols, (11) and (12) respectively, in the ratio 1 : 1. This is due to the comparable stabilities of these two isomers. However, the reduction carried out in presence of aniline affords a higher percentage of the 8?,9?-trienol (11). The assignment of configurations is made by chemical and 1H n.m.r. analysis. Catalytic hydrogenation of the tetraenols (10) is shown to proceed via initial isomerisation to the corresponding 6,6-dimethyl-B-norestra-1,3,5(10),9(11)-tetraen-17?-ols (26), followed by hydrogenation from the ?-side to give, exclusively, the 8?,9?-trienols (12).
Resumo:
Degradation of the tolyl group in the tricyclic ketone 1b followed by stereospecific reduction of the resultant ketoester (6) furnishes the title compound (4) containing a new tetracyclic framework, establishing the stereochemistry of the aryl group in 1.
Resumo:
Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.
Resumo:
Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.