115 resultados para Myotis-lucifugus
Resumo:
1. Sex differences in levels of parasite infection are a common rule in a wide range of mammals, with males usually more susceptible than females. Sex-specific exposure to parasites, e.g. mediated through distinct modes of social aggregation between and within genders, as well as negative relationships between androgen levels and immune defences are thought to play a major role in this pattern. 2. Reproductive female bats live in close association within clusters at maternity roosts, whereas nonbreeding females and males generally occupy solitary roosts. Bats represent therefore an ideal model to study the consequences of sex-specific social and spatial aggregation on parasites' infection strategies. 3. We first compared prevalence and parasite intensities in a host-parasite system comprising closely related species of ectoparasitic mites (Spinturnix spp.) and their hosts, five European bat species. We then compared the level of parasitism between juvenile males and females in mixed colonies of greater and lesser mouse-eared bats Myotis myotis and M. blythii. Prevalence was higher in adult females than in adult males stemming from colonial aggregations in all five studied species. Parasite intensity was significantly higher in females in three of the five species studied. No difference in prevalence and mite numbers was found between male and female juveniles in colonial roosts. 4. To assess whether observed sex-biased parasitism results from differences in host exposure only, or, alternatively, from an active, selected choice made by the parasite, we performed lab experiments on short-term preferences and long-term survival of parasites on male and female Myotis daubentoni. When confronted with adult males and females, parasites preferentially selected female hosts, whereas no choice differences were observed between adult females and subadult males. Finally, we found significantly higher parasite survival on adult females compared with adult males. 5. Our study shows that social and spatial aggregation favours sex-biased parasitism that could be a mere consequence of an active and adaptive parasite choice for the more profitable host.
Resumo:
Hand development in the European shrew Crocidura russula is described, based on the examination of a cleared and double-stained ontogenetic series and histological sections of a c. 20-day-old embryo and a neonate. In the embryo all carpal elements are still mesenchymal condensations, and there are three more elements than in the adult stage: the 'lunatum', which fuses with the scaphoid around birth; a centrale, which either fuses with another carpal element or just disappears later in ontogeny; and the anlage of an element that later fuses with the radius. Carpal arrangement in the neonate and the adult is the same. In order to compare the relative timing of the onset of ossification in forelimb bones in C. russula with that of other therians, we built up two matrices of events based on two sets of data and used the event-pair method. In the first analysis, ossification of forelimb elements in general was examined, including that of the humerus, radius, ulna, the first carpal and metacarpal to ossify, and the phalanges of the third digit. The second analysis included each carpal, humerus, radius, ulna, the first metacarpal and the first phalanx to ossify. Some characters (= event-pairs) provide synapomorphies for some clades examined. There have been some shifts in the timing of ossification apparently not caused by ecological and/or environmental influences. In two species (Oryctolagus and Myotis), there is a tendency to start the ossification of the carpals relatively earlier than in all other species examined, the sauropsid outgroups included.
Resumo:
Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite (Spinturnix bechsteini) and compared it to that of its social host, the Bechstein's bat (Myotis bechsteinii). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.
Resumo:
Movements and spatial distribution of host populations are expected to shape the genetic structure of their parasite populations. Comparing the genetic patterns of both interacting species may improve our understanding of their evolutionary history. Moreover, genetic analyses of parasites with horizontal transmission may serve as indicators of historical events or current demographic processes that are not apparent in the genetic signature of their hosts. Here, we compared mitochondrial variation in populations of the ectoparasitic mite Spinturnix myoti with the genetic pattern of its host, the Maghrebian bat Myotis punicus in North Africa and in the islands of Corsica and Sardinia. Mite mitochondrial differentiation among populations was correlated with both host mitochondrial and nuclear differentiation, suggesting spatial co-differentiation of the lineages of the two interacting species. Therefore our results suggest that parasite dispersal is exclusively mediated by host movements, with open water between landmasses as a main barrier for host and parasite dispersal. Surprisingly the unique presence of a continental European mite lineage in Corsica was inconsistent with host phylogeographical history and strongly suggests the former presence of European mouse-eared bats on this island. Parasites may thus act as biological tags to reveal the presence of their now locally extinct host.
Resumo:
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non-infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria-like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild-caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.
Resumo:
Międzyrzecz Fortified Front, were Natura 2000 site PLH080003 Nietoperek is situated, was built by the Germans in the 1930s and during the World War II. It is composed of above ground bunkers connected by underground tunnels of ca. 32 km total length. Nietoperek is the eighth largest bats hibernation site in EU. Monthly censuses were carried out from October to April during three consecutive winter seasons (2011/12 – 2013/14) in area covering ca. 30% of the undergrounds. The aims of the study were: (1) to describe changes in numbers of each species in the course of hibernation season, (2) to suggest deadlines for counting particular bat species to obtain maximal numbers and (3) to describe negative impact of tourism on hibernating bats. The results will be useful for restriction of winter tourism in Nietoperek. The total number of bats observed during the study was 37869 individuals of 9 species. Because of difficulties in distinguishing without handling M. mystacinus and M. brandtii were treated as one group. M. myotis constituted from 53% (first season) to 64% (last season) of all hibernating bats. The maximal numbers of individuals were observed in November (first two seasons) and in December (third season). M. daubentonii constituted from 27% (first season) to 21% (last season) and M. nattereri from 10% (first season) to 11% (second season) of all bats. During the three seasons the maximal numbers of M. daubentonii and M. nattereri were observed in November and December respectively. B. barbastellus and P. auritus constituted from 4% (first season) to 2% (last season) of the multi species colony. The maximal numbers of B. barbastellus were observed in January and P. auritus in January (first and second seasons) and in December (third season). Results indicated that the best period for counting maximal numbers of M. myotis and M. daubentonii is November, for M. nattereri is December and for B. barbastellus and P. auritus is January. The study undertaken in the part visited by tourists in winter (total length of 900 m) proved negative effect caused by human disturbance with 23% decline of total bat numbers.
Resumo:
Pneumocystis has been isolated from a wide range of unrelated mammalian hosts, including humans, domestic and wild animals. It has been demonstrated that the genome of Pneumocystis of one host differs markedly from that of other hosts. Also, variation in the chromosome and DNA sequence of Pneumocystis within a single host species has been observed. Since information about the occurrence and nature of infections in wild animals is still limited, the objective of this work was to detect the presence of Pneumocystis sp. in lungs of bats from two states from Brazil by Nested-PCR amplification. The bats, captured in caves and in urban areas, were obtained from the Program of Rabies Control of two States in Brazil, Mato Grosso and Rio Grande do Sul, located in the Mid-Western and Southern regions of the country, respectively. DNAs were extracted from 102 lung tissues and screened for Pneumocystis by nested PCR at the mtLSU rRNA gene and small subunit of mitochondrial ribosomal RNA (mtSSU rRNA). Gene amplification was performed using the mtLSU rRNA, the primer set pAZ102H - pAZ102E and pAZ102X - pAZY, and the mtSSU rRNA primer set pAZ102 10FRI - pAZ102 10R-RI and pAZ102 13RI - pAZ102 14RI. The most frequent bats were Tadarida brasiliensis (25), Desmodus rotundus (20), and Nyctinomops laticaudatus (19). Pneumocystis was more prevalent in the species Nyctinomops laticaudatus (26.3% = 5/19), Tadarida brasiliensis (24% = 6/25), and Desmodus rotundus (20% = 4/20). Besides these species, Pneumocystis also was detected in lungs from Molossus molossus (1/11, 9.1%), Artibeus fimbriatus (1/1, 100%), Sturnira lilium (1/3, 33.3%), Myotis levis (2/3, 66.7%)and Diphylla ecaudata (1/2, 50%). PCR products which could indicate the presence of Pneumocystis (21.56%) were identified in DNA samples obtained from 8 out of 16 classified species from both states (5 bats were not identified). This is the first report of detection of Pneumocystis in bats from Brazil.
Resumo:
Living nature consists of countless organisms, which are classified into millions of species. These species interact in many ways; for example predators when foraging on their prey, insect larvae consuming plants, and pathogenic bacteria drifting into humans. In addition, abiotic nature has a great initiative impact on life through many factors (including sunlight, ambient temperature, and water. In my thesis, I have studied interactions among different life forms in multifaceted ways. The webs of these interactions are commonly referred to as food webs, describing feeding relationships between species or energy transfer from one trophic level to another. These ecological interactions – whether they occur between species, between individuals, or between microorganisms within an individual – are among the greatest forces affecting natural communities. Relationships are tightly related to biological diversity, that is, species richness and abundances. A species is called a node in food web vocabulary, and its interactions to other species are called links. Generally, Artic food webs are considered to be loosely linked, simple structures. This conception roots into early modern food webs, where insects and other arthropods, for example, were clumped under one node. However, it has been shown that arthropods form the greatest part of diversity and biomass both in the tropics and in Arctic areas. Earlier challenges of revealing the role of insects and microorganisms in interactions webs have become possible with the help of recent advances in molecular techniques. In the first chapter, I studied the prey diversity of a common bat, Myotis daubentonii, in southwestern Finland. My results proved M. daubentonii being a versatile predator whose diet mainly consists of aquatic insects, such as chironomid midges. In the second chapter, I expanded the view to changes in seasonal and individual-based variation in the diet of M. daubentonii including the relationship between available and observed prey. I found out that chironomids remain the major prey group even though their abundance decreases in proportion to other insect groups. Diet varied a lot between individuals, although the differences were not statistically significant. The third chapter took the study to a large network in Greenland. I showed that Artic food webs are very complex when arthropods are taken into account. In the fourth chapter, I examined the bacterial flora of M. daubentonii and surveyed the zoonotic potential of these bacteria. I found Bartonella bacteria, of which one was described as a new species named after the locality of discovery. I have shown in my thesis that Myotis daubentonii as a predator links many insect species as well as terrestrial and aquatic environments. Moreover, I have exposed that Arctic food webs are complex structures comprising of many densely linked species. Finally, I demonstrated that the bacterial flora of bats includes several previously unknown species, some of which could possibly turn in to zoonosis. To summarize, molecular methods have untied several knots in biological research. I hope that this kind of increasing knowledge of the surrounding nature makes us further value all the life forms on earth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study the incidence of moths and beetles was examined from feces samples of bats that use different foraging behaviors. Twenty sites around the Fazenda Intervales, a Field Research Station located in São Paulo State, in southeastern Brazil were sampled. Feces were collected from bats caught in mist nets, Turtle Traps or hand nets and, in one case, from beneath a roost. Feces samples were taken from six species of bats: Micronycteris megalotis (Gray, 1842), Mimon bennettii (Gray, 1838), Furipterus horrens (F. Cuvier, 1828), Myotis riparius Handley, 1960, Myotis ruber (E. Geoffroy, 1806) and Histiotus velalus (I. Geoffroy, 1824). To record and describe the frequencies dominating bat echolocation calls, an Anabat II bat detector coupled with an Anabat ZCA interfaces and DOS laptop computers were used. The data show that Furipterus horrens feeds extensively on moths, as predicted from the features of its echolocation calls. Gleaning bats, whose echolocation calls are much less conspicuous to moths take a wide range of insect (and other) prey.
Resumo:
Estudo preliminar sobre a riqueza de espécies e a freqüência de capturas de morcegos em dois habitats, mata primária e reflorestamento de Araucária, na Região Centro Leste do Paraná. Foi empregado o mesmo esforço para as duas áreas, resultando na captura de 11 espécies na área de mata primária, contra oito no reflorestamento de Araucária. A uniformidade na distribuição da abundância -equitabilidade - foi maior na mata primária. No reflorestamento de Araucária, noventa por cento dos indivíduos coletados pertenciam somente a duas espécies. Pelos resultados, conclui-se que a floresta primária com numerosos nichos, apresenta uma riqueza de espécies elevada, mas a ação do homem reduz a riqueza de espécies geral, o que se reflete principalmente na dominância de poucas espécies. Destaca-se aqui, nos dois tipos de ambientes, a presença de Myotis ruber, listada como ameaçada de extinção no Brasil.
Resumo:
OBJETIVO: Os relatos sobre a ocorrência de raiva em morcegos no Brasil são esporádicos e isolados. Assim, o objetivo do estudo foi descrever a detecção do vírus da raiva em morcegos do Estado de São Paulo. MÉTODOS: Foram analisados 7.393 morcegos provenientes de 235 municípios do norte e noroeste do Estado de São Paulo, no período de 1997 a 2002 e identificados por meio de características morfológicas e morfométricas. Para a detecção do antígeno viral foi utilizada a técnica de imunofluorescência direta e o isolamento do vírus foi realizado por inoculação em camundongos. RESULTADOS: Das amostras examinadas, 1,3% foram positivas para raiva, com variação de 0,2% em 1997 a 1,6% em 2001. Foram encontrados 98 morcegos com o vírus, 87 deles em área urbana. O vírus da raiva foi detectado pela imunofluorescência direta em 77 do total de amostras positivas, enquanto 92 produziram doença em camundongos inoculados e o período de incubação variou entre 4-23 dias. em 43 municípios foi encontrado pelo menos um morcego positivo. Entre as espécies analisadas o vírus da raiva foi detectado com maior freqüência (33,7%) em Artibeus lituratus. Os vespertilionideos do gênero Eptesicus e Myotis totalizaram 24,5% dos morcegos positivos e as espécies do gênero Molossus (Molossus molossus e Molossus rufus), 14,3%. A distribuição do vírus da raiva foi semelhante entre fêmeas (33; 48,5%) e machos (35; 51,5%). CONCLUSÕES: Morcegos positivos para raiva foram encontrados em situações que colocam em risco tanto a população humana como animais de estimação, exigindo medidas voltadas para o manejo destas espécies e de educação da população.
Resumo:
Random amplified polymorphic DNA molecular marker was utilized as a means of analyzing genetic variability in seven bat species: Molossus molossus, M. rufus, Eumops glaucinus, E. perotis, Myotis nigricans, Eptesicus furinalis, and Artibeus planirostris. The determination of genetic diversity was based on 741 bands produced by a 20-random primer set. Only eight bands were considered monomorphic to one species. The greatest number of bands and the most polymorphic condition were exhibited by M. molossus, followed by M. nigricans, A. planirostris, E. furinalis, E. glaucinus, M. rufus, and E. perotis. Nei's genetic diversity index in the seven species considering the 20 primers was not greater than 0.22, but some primers were capable of detecting values between 0.39 and 0.49. Nei's unbiased genetic distance values and the UPGMA clustering pattern show that M. molossus and M. rufus have a close genetic relationship, unlike that observed between E. perotis and E. glaucinus. The latter was clustered with A. planirostris and E. furinalis. The low values for genetic diversity and distance observed indicate a genetic conservatism in the seven species. The fluorescent in situ hybridization experiments did not confirm a monomorphic condition for the eight bands identified, demonstrating that the monomorphic bands obtained by random amplified polymorphic DNA are insufficient for the identification of bat species.
Resumo:
The diagnosis of rabies in bats is usually performed using the brain of suspected animals. The main hypothesis tested by the present study was whether the aspiration method using a plastic pipette (Pasteur type) was effective in the collection of bat brain sample for rabies diagnosis when compared to the skull-opening method. A total of 200 bats of 4 species were studied: Molossus rufus E. Geoffroy, 1805, Molossus molossus (Pallas, 1766), Artibeus lituratus (Olfers, 1818) and Myotis nigricans (Schinz, 1821). The proportion of brain weight compared to body weight was statistically higher when using the traditional method, although the brain mass collected by the aspiration method was enough for rabies diagnosis and did not damage any skull biometric characteristics. The results demonstrate that both collection methods detected positive samples, while the aspiration method has the advantage of skull preservation, permitting the identification of the species.