945 resultados para Mutation de spécification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Familial diarrhea disorders are, in most cases, severe and caused by recessive mutations. We describe the cause of a novel dominant disease in 32 members of a Norwegian family. The affected members have chronic diarrhea that is of early onset, is relatively mild, and is associated with increased susceptibility to inflammatory bowel disease, small-bowel obstruction, and esophagitis. METHODS We used linkage analysis, based on arrays with single-nucleotide polymorphisms, to identify a candidate region on chromosome 12 and then sequenced GUCY2C, encoding guanylate cyclase C (GC-C), an intestinal receptor for bacterial heat-stable enterotoxins. We performed exome sequencing of the entire candidate region from three affected family members, to exclude the possibility that mutations in genes other than GUCY2C could cause or contribute to susceptibility to the disease. We carried out functional studies of mutant GC-C using HEK293T cells. RESULTS We identified a heterozygous missense mutation (c.2519G -> T) in GUCY2C in all affected family members and observed no other rare variants in the exons of genes in the candidate region. Exposure of the mutant receptor to its ligands resulted in markedly increased production of cyclic guanosine monophosphate (cGMP). This may cause hyperactivation of the cystic fibrosis transmembrane regulator (CFTR), leading to increased chloride and water secretion from the enterocytes, and may thus explain the chronic diarrhea in the affected family members. CONCLUSIONS Increased GC-C signaling disturbs normal bowel function and appears to have a proinflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. Further investigation of the relevance of genetic variants affecting the GC-C-CFTR pathway to conditions such as Crohn's disease is warranted. (Funded by Helse Vest Western Norway Regional Health Authority] and the Department of Science and Technology, Government of India.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately one third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. A better understanding of the pathogen biology is crucial to develop new tools/strategies to tackle its spread and treatment. In the host macrophages, the pathogen is exposed to reactive oxygen species, known to damage dGTP and GTP to 8-oxo-dGTP and 8-oxo-GTP, respectively. Incorporation of the damaged nucleotides in nucleic acids is detrimental to organisms. MutT proteins, belonging to a class of Nudix hydrolases, hydrolyze 8-oxo-G nucleoside triphosphates/diphosphates to the corresponding nucleoside monophosphates and sanitize the nucleotide pool. Mycobacteria possess several MutT proteins. However, a functional homolog of Escherichia coli MutT has not been identified. Here, we characterized MtuMutT1 and Rv1700 proteins of M. tuberculosis. Unlike other MutT proteins, MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP, and 8-oxo-GTP to 8-oxo-GDP. Rv1700 then converts them to the corresponding nucleoside monophosphates. This observation suggests the presence of a two-stage mechanism of 8-oxo-dGTP/8-oxo-GTP detoxification in mycobacteria. MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP with a K-m of similar to 50 mu M and V-max of similar to 0.9 pmol/min per ng of protein, and Rv1700 converts 8-oxo-dGDP to 8-oxo-dGMP with a K-m of similar to 9.5 mu M and V-max of similar to 0.04 pmol/min per ng of protein. Together, MtuMutT1 and Rv1700 offer maximal rescue to E. coli for its MutT deficiency by decreasing A to C mutations (a hallmark of MutT deficiency). We suggest that the concerted action of MtuMutT1 and Rv1700 plays a crucial role in survival of bacteria against oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Congenital hereditary endothelial dystrophy 2 (CHED2) is an autosomal recessive disorder caused by mutations in the solute carrier family 4, sodium borate transporter, member 11 (SLC4A11) gene. The purpose of this study was to identify the genetic cause of CHED2 in six Indian families and catalog all known mutations in the SLC4A11 gene. Methods: Peripheral blood samples were collected from individuals of the families with CHED2 and used in genomic DNA isolation. PCR primers were used to amplify the entire coding region including intron-exon junctions of SLC4A11. Amplicons were subsequently sequenced to identify the mutations. Results: DNA sequence analysis of the six families identified four novel (viz., p.Thr262Ile, p.Gly417Arg, p.Cys611Arg, and p.His724Asp) mutations and one known p.Arg869His homozygous mutation in the SLC4A11 gene. The mutation p.Gly417Arg was identified in two families. Conclusions: This study increases the mutation spectrum of the SLC4A11 gene. A review of the literature showed that the total number of mutations in the SLC4A11 gene described to date is 78. Most of the mutations are missense, followed by insertions-deletions. The present study will be helpful in genetic diagnosis of the families reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor-suppressor protein p53, the `guardian of the genome', is critical in maintaining cellular homeostasis and genomic stability. Earlier, we have reported the discovery of internal ribosome entry sites (IRESs) within the p53 mRNA that regulate the translation of the full length and its N-terminal-truncated isoform, Delta N-p53. Polypyrimidine tract-binding protein (PTB) is an IRES trans-acting factor that positively regulates the IRES activities of both p53 isoforms by relocating from nucleus to the cytoplasm during stress conditions. Here we have demonstrated the putative contact points of PTB on the p53 IRES RNA. Studies on mutations that occur naturally in the 5' untranslated region (5' UTR) in p53 mRNA were lacking. We have investigated a naturally occurring C-to-T single-nucleotide polymorphism (SNP) first reported in human melanoma tumors. This SNP is at position 119 in the 5' UTR of p53 mRNA and we demonstrate that it has consequences on the translational control of p53. Introduction of this SNP has led to decrease in cap-independent translation from p53 5' UTR in bicistronic reporter assay. Further, the effects of this SNP on cap-independent translation have been studied in the context of p53 cDNA as well. Interestingly, the 5' UTR with this SNP has shown reduced binding to PTB that can be corroborated to its weaker IRES activity. Previously, it has been shown that G2-M checkpoint, DNA-damaging stress and oncogenic insult favor IRES-mediated translation. Under similar conditions, we demonstrate that this SNP interferes with the enhancement of the IRES activity of the 5' UTR. Taken together, the results demonstrate for the first time that SNP in the 5' UTR of the p53 mRNA might have a role in translational control of this critical tumor-suppressor gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Weill-Marchesani syndrome (WMS) is a rare connective tissue disorder, characterized by short stature, micro-spherophakic lens, and stubby hands and feet (brachydactyly). WMS is caused by mutations in the FBN1, ADAMTS10, and LTBP2 genes. Mutations in the LTBP2 and ADAMTS17 genes cause a WMS-like syndrome, in which the affected individuals show major features of WMS but do not display brachydactyly and joint stiffness. The main purpose of our study was to determine the genetic cause of WMS in an Indian family. Methods: Whole exome sequencing (WES) was used to identify the genetic cause of WMS in the family. The cosegregation of the mutation was determined with Sanger sequencing. Reverse transcription (RT)-PCR analysis was used to assess the effect of a splice-site mutation on splicing of the ADAMTS17 transcript. Results: The WES analysis identified a homozygous novel splice-site mutation c.873+1G>T in a known WMS-like syndrome gene, ADAMTS17, in the family. RT-PCR analysis in the patient showed that exon 5 was skipped, which resulted in the deletion of 28 amino acids in the ADAMTS17 protein. Conclusions: The mutation in the WMS-like syndrome gene ADAMTS17 also causes WMS in an Indian family. The present study will be helpful in genetic diagnosis of this family and increases the number of mutations of this gene to six.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure-function implication on a novel homozygous Trp250/Gly mutation of transglutaminase-1 (TGM1) observed in a patient of autosomal recessive congenital ichthyosis is invoked from a bioinformatics analysis. Structural consequences of this mutation are hypothesized in comparison to homologous enzyme human factor XIIIA accepted as valid in similar structural analysis and are projected as guidelines for future studies at an experimental level on TGM1 thus mutated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH) 1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Methods. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Results. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Conclusions. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rifampicin (Rif) is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr) in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs). Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase) causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Delta arr). The M. smegmatis Delta arr strains show minimum inhibitory concentration (MIC) for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Delta arr. The growth profiles and mutation spectrum of Delta arr and, Delta arr combined with Delta udgB (udgB encodes a DNA repair enzyme that excises uracil) strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of Delta fpg Delta arr strain differed somewhat from that of the Delta fpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G). Our studies suggest M. smegmatis Delta arr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid and high wing-beat frequencies achieved during insect flight are powered by the indirect flight muscles, the largest group of muscles present in the thorax. Any anomaly during the assembly and/or structural impairment of the indirect flight muscles gives rise to a flightless phenotype. Multiple mutagenesis screens in Drosophila melanogaster for defective flight behavior have led to the isolation and characterization of mutations that have been instrumental in the identification of many proteins and residues that are important for muscle assembly, function, and disease. In this article, we present a molecular-genetic characterization of a flightless mutation, flightless-H (fliH), originally designated as heldup-a (hdp-a). We show that fliH is a cis-regulatory mutation of the wings up A (wupA) gene, which codes for the troponin-I protein, one of the troponin complex proteins, involved in regulation of muscle contraction. The mutation leads to reduced levels of troponin-I transcript and protein. In addition to this, there is also coordinated reduction in transcript and protein levels of other structural protein isoforms that are part of the troponin complex. The altered transcript and protein stoichiometry ultimately culminates in unregulated acto-myosin interactions and a hypercontraction muscle phenotype. Our results shed new insights into the importance of maintaining the stoichiometry of structural proteins during muscle assembly for proper function with implications for the identification of mutations and disease phenotypes in other species, including humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptor/ligand interactions are basic issues to cell adhesion, which are important to many physiological and pathological processes such as lymphocyte-mediated cytotoxicity, tumor metastasis and inflammatory reactionl. Selectin/carbohydrate ligand bindings have been found to mediate the fast rolling of leukocytes on activated endothelial monolayer. Kinetic rate and binding affinity constants are essential determinants of cell adhesion...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF). -- Case Presentation: We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality). PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT)-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G > A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A > G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G > A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A > G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. --Conclusions: We present the first description of a CIPA-associated NTRK1 mutation causing a short interstitial deletion in the tyrosine kinase domain of the receptor. The possible phenotypical implications of this mutation are discussed.