995 resultados para Musical parameters.
Resumo:
This research discusses some of the issues encountered while developing a set of WGEN parameters for Chile and advice for others interested in developing WGEN parameters for arid climates. The WGEN program is a commonly used and a valuable research tool; however, it has specific limitations in arid climates that need careful consideration. These limitations are analysed in the context of generating a set of WGEN parameters for Chile. Fourteen to 26 years of precipitation data are used to calculate precipitation parameters for 18 locations in Chile, and 3–8 years of temperature and solar radiation data are analysed to generate parameters for seven of these locations. Results indicate that weather generation parameters in arid regions are sensitive to erroneous or missing precipitation data. Research shows that the WGEN-estimated gamma distribution shape parameter (α) for daily precipitation in arid zones will tend to cluster around discrete values of 0 or 1, masking the high sensitivity of these parameters to additional data. Rather than focus on the length in years when assessing the adequacy of a data record for estimation of precipitation parameters, researchers should focus on the number of wet days in dry months in a data set. Analysis of the WGEN routines for the estimation of temperature and solar radiation parameters indicates that errors can occur when individual ‘months’ have fewer than two wet days in the data set. Recommendations are provided to improve methods for estimation of WGEN parameters in arid climates.
Resumo:
Drawn from a larger mixed methods study, this case study provides an account of aspects of the music education programme that occurred with one teacher and a kindergarten class of children aged three and four years. Contrary to transmission approaches that are often used in Hong Kong, the case depicts how musical creativity was encouraged by the teacher in response to children’s participation during the time for musical free play. It shows how the teacher scaffolded the attempts of George, a child aged 3.6 years to use musical notation. The findings are instructive for kindergarten teachers in Hong Kong and suggest ways in which teachers might begin to incorporate more creative approaches to musical education. They are also applicable to other kindergarten settings where transmission approaches tend to dominate and teachers want to encourage children’s musical creativity.
Resumo:
Idol is a collaborative performance work for vocal performer and dancers. The work explores movement and sound relative to a vocal interface called the eMic (Extended Microphone Interface Controller). The eMic is a gestural controller designed by the composer for live vocal performance an real-time processing. The process for generating the work involves the choreographer being provided an opportunity to experiment with gestures ad movement relative to the eMic interface. The choreographer explored the interface as an object,a prop, an instrument and as an extension of the body. the movement was then videoed and the data coming from the sensors simultaneously recorded. The data and the video were then used as part of the compositional process, allowing the composer to see what the performance looks like and to experiment with mapping strategies using the captured sensor data. This approach represents a new compositional direction for working with the eMic, in that previously the compositional process commenced at the computer, building processing patches and assigning parameters to eMic sensors. In order to play the composition, the body needed to adapt to 'playing' the instrument. This approach treats the eMic like a traditional instrument that requires the human body to develop a command over the instrument. Working with the movement as a starting point inverts the process using choreographic gestures as the basis for musical structures.
Resumo:
A number of instrumented laboratory-scale soil embankment slopes were subjected to artificial rainfall until they failed. The factor of safety of the slope based on real-time measurements of pore-water pressure (suction) and laboratory measured soil properties were calculated as the rainfall progressed. Based on the experiment measurements and slope stability analysis, it was observed that slope displacement measurements can be used to warn the slope failure more accurately. Further, moisture content/pore-water pressure measurements near the toe of the slope and the real-time factor of safety can also be used for prediction of rainfall-induced embankment failures with adequate accuracy.
Resumo:
We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.
Resumo:
Live coding performances provide a context with particular demands and limitations for music making. In this paper we discuss how as the live coding duo aa-cell we have responded to these challenges, and what this experience has revealed about the computational representation of music and approaches to interactive computer music performance. In particular we have identified several effective and efficient processes that underpin our practice including probability, linearity, periodicity, set theory, and recursion and describe how these are applied and combined to build sophisticated musical structures. In addition, we outline aspects of our performance practice that respond to the improvisational, collaborative and communicative requirements of musical live coding.
Resumo:
To date, the majority of films that utilise or feature hip hop music and culture, have either been in the realms of documentary, or in ‘show musicals’ (where the film musical’s device of characters’ bursting into song, is justified by the narrative of a pursuit of a career in the entertainment industry). Thus, most films that feature hip hop expression have in some way been tied to the subject of hip hop. A research interest and enthusiasm was developed for utilising hip hop expression in film in a new way, which would extend the narrative possibilities of hip hop film to wider topics and themes. The creation of the thesis film Out of My Cloud, and the writing of this accompanying exegesis, investigates a research concern of the potential for the use of hip hop expression in an ‘integrated musical’ film (where characters’ break into song without conceit or explanation). Context and rationale for Out of My Cloud (an Australian hip hop ‘integrated musical’ film) is provided in this writing. It is argued that hip hop is particularly suitable for use in a modern narrative film, and particularly in an ‘integrated musical’ film, due to its: current vibrancy and popularity, rap (vocal element of hip hop) music’s focus on lyrical message and meaning, and rap’s use as an everyday, non-performative method of communication. It is also argued that Australian hip hop deserves greater representation in film and literature due to: its current popularity, and its nature as a unique and distinct form of hip hop. To date, representation of Australian hip hop in film and television has almost solely been restricted to the documentary form. Out of My Cloud borrows from elements of social realist cinema such as: contrasts with mainstream cinema, an exploration/recognition of the relationship between environment and development of character, use of non-actors, location-shooting, a political intent of the filmmaker, displaying sympathy for an underclass, representation of underrepresented character types and topics, and a loose narrative structure that does not offer solid resolution. A case is made that it may be appropriate to marry elements of social realist film with hip hop expression due to common characteristics, such as: representation of marginalised or underrepresented groups and issues in society, political objectives of the artist/s, and sympathy for an underclass. In developing and producing Out of My Cloud, a specific method of working with, and filming actor improvisation was developed. This method was informed by improvisation and associated camera techniques of filmmakers such as Charlie Chaplin, Mike Leigh, Khoa Do, Dogme 95 filmmakers, and Lars von Trier (post-Dogme 95). A review of techniques used by these filmmakers is provided in this writing, as well as the impact it has made on my approach. The method utilised in Out of My Cloud was most influenced by Khoa Do’s technique of guiding actors to improvise fairly loosely, but with a predetermined endpoint in mind. A variation of this technique was developed for use in Out of My Cloud, which involved filming with two cameras to allow edits from multiple angles. Specific processes for creating Out of My Cloud are described and explained in this writing. Particular attention is given to the approaches regarding the story elements and the music elements. Various significant aspects of the process are referred to including the filming and recording of live musical performances, the recording of ‘freestyle’ performances (lyrics composed and performed spontaneously) and the creation of a scored musical scene involving a vocal performance without regular timing or rhythm. The documentation of processes in this writing serve to make the successful elements of this film transferable and replicable to other practitioners in the field, whilst flagging missteps to allow fellow practitioners to avoid similar missteps in future projects. While Out of My Cloud is not without its shortcomings as a short film work (for example in the areas of story and camerawork) it provides a significant contribution to the field as a working example of how hip hop may be utilised in an ‘integrated musical’ film, as well as being a rare example of a narrative film that features Australian hip hop. This film and the accompanying exegesis provide insights that contribute to an understanding of techniques, theories and knowledge in the field of filmmaking practice.
Resumo:
The variability of input parameters is the most important source of overall model uncertainty. Therefore, an in-depth understanding of the variability is essential for uncertainty analysis of stormwater quality model outputs. This paper presents the outcomes of a research study which investigated the variability of pollutants build-up characteristics on road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary highly even within the same land use. Additionally, industrial land use showed relatively higher variability of maximum build-up, build-up rate and particle size distribution, whilst the commercial land use displayed a relatively higher variability of pollutant-solid ratio. Among the various build-up parameters analysed, D50 (volume-median-diameter) displayed the relatively highest variability for all three land uses.
Resumo:
In recent years, the application of heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works on the titanium dioxide (TiO2) photocatalytic oxidation of pesticides and phenolic compounds, predominant in storm and waste water effluents. The effect of various operating parameters on the photocatalytic degradation of pesticides and phenols are discussed. Results reported here suggested that the photocatalytic degradation of organic compounds depends on the type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, catalyst application mode, and calcinations temperature in water environment. A substantial amount of research has focused on the enhancement of TiO2 photocatalysis by modification with metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various pesticides and phenols are also highlighted in this review. It is evident from the literature survey that photocatalysis has shown good potential for the removal of various organic pollutants. However, still there is a need to find out the practical utility of this technique on commercial scale.
Resumo:
Experiments were undertaken to study effect of initial conditions on the expansion ratio of two grains in a laboratory scale, single speed, single screw extruder at Naresuan University, Thailand. Jasmine rice and Mung bean were used as the material. Three different initial moisture contents were adjusted for the grains and classified them into three groups according to particle sizes. Mesh sizes used are 12 and 14. Expansion ratio was measured at a constant barrel temperature of 190oC. Response surface methodology was used to obtain optimum conditions between moisture content and particle size of the materials concerned.
Resumo:
Food microstructure represents the way their elements arrangement and their interaction. Researchers in this field benefit from identifying new methods of examination of the microstructure and analysing the images. Experiments were undertaken to study micro-structural changes of food material during drying. Micro-structural images were obtained for potato samples of cubical shape at different moisture contents during drying using scanning electron microscopy. Physical parameters such as cell wall perimeter, and area were calculated using an image identification algorithm, based on edge detection and morphological operators. The algorithm was developed using Matlab.
Resumo:
Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.
Resumo:
Differential axial deformation between column elements and shear wall elements of cores increase with building height and geometric complexity. Adverse effects due to the differential axial deformation reduce building performance and life time serviceability. Quantifying axial deformations using ambient measurements from vibrating wire, external mechanical and electronic strain gauges in order to acquire adequate provisions to mitigate the adverse effects is well established method. However, these gauges require installing in or on elements to acquire continuous measurements and hence use of these gauges is uneconomical and inconvenient. This motivates to develop a method to quantify the axial deformations. This paper proposes an innovative method based on modal parameters to quantify axial deformations of shear wall elements in cores of buildings. Capabilities of the method are presented though an illustrative example.
Resumo:
Any incident on motorways potentially can be followed by secondary crashes. Rear-end crashes also could happen as a result of queue formation downstream of high speed platoons. To decrease the occurrence of secondary crashes and rear-end crashes, Variable Speed Limits (VSL) can be applied to protect queue formed downstream. This paper focuses on fine tuning the Queue Protection algorithm of VSL. Three performance indicators: activation time, deactivation time and number of false alarms are selected to optimise the Queue Protection algorithm. A calibrated microscopic traffic simulation model of Pacific Motorway in Brisbane is used for the optimisation. Performance of VSL during an incident and heavy congestion and the benefit of VSL will be presented in the paper.