990 resultados para Mulungu. Recombinant inhibitor. Anticoagulant. Microbicide activity. Proinflammatory activity
Resumo:
OBJECTIVE: This study aims to evaluate the citotoxic activity of two commonly used anti-depressants: paroxetine and bupropion. We also evaluated the in vitro natural killer activity (NKA) after incubating the blood samples with the antidepressants. METHODS: Peripheral blood samples from 15 healthy volunteers were collected and the mononuclear cells (PBMCs) were isolated and incubated for 24h with (or without = control cells) paroxetine and bupropion, in concentrations of 30, 100 and 1000 ng/ml. After the incubation period in both groups, the amount of dead cells was calculated using trypam blue technique. NKA was evaluated using the classic51Cr release assay. CONCLUSIONS: PBMCs dead cells occurred in both groups and in proportion to all pharmacological concentrations. Nevertheless, the NKA was not affected, even with the reduction in the number of effective cells.
Resumo:
Abstract Long term contact with pathogens induces an adaptive immune response, which is mainly mediated by T and B cells. Antigen-induced activation of T and B cells is an important event, since it facilitates the transition of harmless, low proliferative lymphocytes into powerful and fast expanding cells, which can, if deregulated, be extremely harmful and dangerous for the human body. One of the most important events during lymphocyte activation is the induction of NF-xB activity, a transcription factor that controls not only cytokine secretion, but also lymphocyte proliferation and survival. Recent discoveries identified the CBM complex as the central regulator of NF-xB activity in lymphocytes. The CBM complex consists of the three proteins Carma1, Bcl10 and Malt1, in which Carma1 serves as recruitment platform of the complex and Bcl10 as an adaptor to recruit Malt1 to this platform. But exactly how Malt1 activates NF-x6 is still poorly understood. We discovered that Malt1 is a protease, which cleaves its interaction partner Bcl10 upon T and B cell stimulation. We mapped the Bcl10 cleavage site by single point mutations as well as by a proteomics approach, and used this knowledge to design a fluorogenic Malt1 reporter peptide. With this tool were we able to the first time demonstrate proteolytic activity of Malt1 in vitro, using recombinant Malt1, and in stimulated T cells. Based on similarities to a metacaspase, we designed a Malt1inhibitor, which allowed unto investigate the role of Malt1 activity in T cells. Malt1-inhibited T cells showed a clear defect in NF-xB activity, resulting in impaired IL-2 cytokine secretion levels. We also found a new unexpected role for Bcl10; the blockade of Bcl10 cleavage resulted in a strongly impaired capability of stimulated T cells to adhere to the extracellular matrix protein fibronectin. Because of the central position of the C8M complex, it is not surprising that different lymphomas show abnormal expressions of Carma1, Bcl10 and Malt1. We investigated the role of Malt1 proteolytic activity in the most aggressive subtype of diffuse large B cell lymphomas called ABC, which was described to depend on the expression of Carmal, and frequently carries oncogenic Carmal mutations. We found constitutive high Malt1 activity in all tested ABC cell lines visualized by detection of cleavage products of Malt1 substrates. With the use of the Malt1-inhibitor, we could demonstrate that Malt-inhibition in those cells had two effects. First, the tumor cell proliferation was decreased, most likely because of lower autocrine stimulation by cytokines. Second, we could sensitize the ABC cells towards cell death, which is most likely caused by reduced expression of prosurvival NF-xB target gens. Taken together, we identified Malt1 as a protease in T and B cells, demonstrated its importance for NF-xB signaling and its deregulation in a subtype of diffuse large B cell lymphoma. This could allow the development of a new generation of immunomodulatory and anti-cancer drugs. Résumé Un contact prolongé avec des pathogènes provoque une réponse immunitaire adaptative qui dépend principalement des cellules T et 8. L'activation des lymphocytes T et B, suite à la reconnaissance d'un antigène, est un événement important puisqu'il facilite la transition pour ces cellules d'un état de prolifération limitée et inoffensive à une prolifération soutenue et rapide. Lorsque ce mécanisme est déréglé ìl peut devenir extrêmement nuisible et dangereux pour le corps humain. Un des événement les plus importants lors de l'activation des lymphocytes est l'induction du facteur de transcription NFxB, qui organise la sécrétion de cytokines ainsi que la prolifération et la survie des lymphocytes. Le complexe CBM, composé des trois protéines Carmai, Bc110 et Malt1, a été récemment identifié comme un régulateur central de l'activité de NF-x8 dans les lymphocytes. Carma1 sert de plateforme de recrutement pour ce complexe alors que Bc110 permet d'amener Malt1 dans cette plateforme. Cependant, le rôle exact de Malt1 dans l'activation de NF-tcB reste encore mal compris. Nous avons découvert que Malt1 est une protéase qui clive son partenaire d'interaction BcI10 après stimulation des cellules T et B. Nous avons identifié le site de clivage de BcI10 par une série de mutations ponctuelles ainsi que par une approche protéomique, ce qui nous a permis de fabriquer un peptide reporteur fluorogénique pour mesurer l'activité de Malt1. Grâce à cet outil, nous avons démontré pour la première fois l'activité protéolytique de Malt1 in vitro à l'aide de protéines Malt1 recombinantes ainsi que dans des cellules T stimulées. La ressemblance de Malt1 avec une métacaspase nous a permis de synthétiser un inhibiteur de Malt1 et d'étudier ainsi le rôle de l'activité de Malt1 dans les cellules T. L'inhibition de Malt1 dans les cellules T a révélé un net défaut de l'activité de NF-x8, ayant pour effet une sécrétion réduite de la cytokine IL-2. Nous avons également découvert un rôle inattendu pour Bcl10: en effet, bloquer le clivage de Bcl10 diminue fortement la capacité d'adhésion des cellules T stimulées à la protéine fïbronectine, un composant de la matrice extracellulaire. En raison de la position centrale du complexe CBM, il n'est pas étonnant que le niveau d'expression de Carmai, Bcl10 et Malt1 soit anormal dans plusieurs types de lymphomes. Nous avons examiné le rôle de l'activité protéolytique de Malt1 dans le sous-type le plus agressif des lymphomes B diffus à grandes cellules, appelé sous-type ABC. Ce sous-type de lymphomes dépend de l'expression de Carmai et présente souvent des mutations oncogéniques de Carma1. Nous avons démontré que l'activité de Malt1 était constitutivement élevée dans toutes les lignées cellulaires de type ABC testées, en mettant en évidence la présence de produits de clivage de différents substrats de Malt1. Enfin, l'utilisation de l'inhibiteur de Malt1 nous a permis de démontrer que l'inhibition de Malt1 avait deux effets. Premièrement, une diminution de la prolifération des cellules tumorales, probablement dûe à leur stimulation autocrine par des cytokines fortement réduite. Deuxièmement, une sensibilisation des cellules de type ABC à ia mort cellulaire, vraisemblablement causée par l'expression diminuée de gènes de survie dépendants de NF-tcB. En résumé, nous avons identifié Malt1 comme une protéase dans les cellules T et B, nous avons mis en évidence son importance pour l'activation de NF-xB ainsi que les conséquences du dérèglement de l'activité de Malt1 dans un sous-type de lymphome B diffus à larges cellules. Notre étude ouvre ainsi la voie au développement d'une nouvelle génération de médicaments immunomodulateurs et anti-cancéreux.
Resumo:
APO866 inhibits nicotinamide phosphoribosyltransferase (NMPRTase), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Intracellular NAD is essential for cell survival, and NAD depletion resulting from APO866 treatment elicits tumor cell death. Here, we determine the in vitro and in vivo sensitivities of hematologic cancer cells to APO866 using a panel of cell lines (n = 45) and primary cells (n = 32). Most cancer cells (acute myeloid leukemia [AML], acute lymphoblastic leukemia [ALL], mantle cell lymphoma [MCL], chronic lymphocytic leukemia [CLL], and T-cell lymphoma), but not normal hematopoietic progenitor cells, were sensitive to low concentrations of APO866 as measured in cytotoxicity and clonogenic assays. Treatment with APO866 decreased intracellular NAD and adenosine triphosphate (ATP) at 24 hours and 48 to72 hours, respectively. The NAD depletion led to cell death. At 96 hours, APO866-mediated cell death occurred in a caspase-independent mode, and was associated with mitochondrial dysfunction and autophagy. Further, in vivo administration of APO866 as a single agent prevented and abrogated tumor growth in animal models of human AML, lymphoblastic lymphoma, and leukemia without significant toxicity to the animals. The results support the potential of APO866 for treating hematologic malignancies.
Resumo:
The cellular protease subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in the proteolytic processing of the viral envelope glycoprotein precursor (GPC) of arenaviruses, a step strictly required for production of infectious progeny. The small molecule SKI-1/S1P inhibitor PF-429242 was shown to have anti-viral activity against Old World arenaviruses. Here we extended these studies and show that PF-429242 also inhibits GPC processing and productive infection of New World arenaviruses, making PF-429242 a broadly active anti-arenaviral drug. In combination therapy, PF-429242 potentiated the anti-viral activity of ribavirin, indicating a synergism between the two drugs. A hallmark of arenaviruses is their ability to establish persistent infection in vitro and in vivo. Notably, PF-429242 was able to efficiently and rapidly clear persistent infection by arenaviruses. Interruption of drug treatment did not result in re-emergence of infection, indicating that PF-429242 treatment leads to virus extinction.
Resumo:
A sex steroid-dependent modulation of the immune function in mammals is accepted, and evidence suggests that while estrogens enhance, androgens inhibit the immune response. The aim of this study was to explore in the adult male rat the effect of either neonatal flutamide (FTM) treatment or prepubertal orchidectomy (ODX) on endocrine markers in the basal condition and peripheral tumor necrosis factor alpha (TNFα) levels during inflammatory stress. For these purposes, (1) 5-day-old male rats were subcutaneously injected with either sterile vehicle alone or containing 1.75 mg FTM, and (2) 25-day-old male rats were sham operated or had ODX. Rats were sacrificed (at 100 days of age) in the basal condition for determination of peripheral metabolite levels. Additional rats were intravenously injected with bacterial lipopolysaccharide (LPS; 25 μg/kg body weight, i.v.) and bled for up to 4 h. Data indicate that (1) ODX increased peripheral glucocorticoid levels and reduced those of testosterone, whereas FTM-treated rats displayed low circulating leptin concentrations, and (2) LPS-induced TNFα secretion in plasma was significantly enhanced in the FTM and ODX groups. Our study supports that neonatal FTM treatment affected adiposity function, and adds data maintaining that androgens have a suppressive role in proinflammatory cytokine release in plasma during inflammation.
Resumo:
In this study, anticoagulant activity was detected in salivary gland homogenates (SGHs) of Thyrsopelma guianense (Diptera: Simuliidae). The SGH yielded 1.07 μg ± 0.03 (n = 15) of total soluble protein per pair of glands. In addition, following SDS-PAGE (12.5% gel) and silver nitrate staining, 12 polypeptides with molecular weights ranging from 14-69 kDa were detected in all physiological ages analyzed (12 h, 24 h, 48 h and 72 h following emergence). Coagulation bioassays showed that the SGHs had activities that interacted at all levels of coagulation (the intrinsic, extrinsic and common pathways), by extending the plasma recalcification time, prothrombin time, thrombin time. This is the first report on the activity of salivary gland proteins from the main vector of onchocerciasis in Brazil. We also suggest detailed studies on the morphology and function of the salivary glands in order to understand the role of these proteins in host/vector interactions.
Resumo:
In this study the effect of eight DNA topoisomerase inhibitors on the growth Trypanosoma rangeli epimastigotes in cell culture was investigated. Among the eight compounds tested, idarubicin was the only compound that displayed promising trypanocidal activity with a half-maximal growth inhibition (GI50) value in the sub-micromolar range. Fluorescence-activated cell sorting analysis showed a reduction in DNA content in T. rangeli epimastigotes when treated with idarubicin. In contrast to T. rangeli, against Trypanosoma cruzi epimastigotes idarubicin was much less effective exhibiting a GI50 value in the mid-micromolar range. This result indicates that idarubicin displays differential toxic effects in T. rangeli and T. cruzi. Compared with African trypanosomes, it seems that American trypanosomes are generally less susceptible to DNA topoisomerase inhibitors.
Resumo:
The peptidoglycan of Gram-positive bacteria is known to trigger cytokine release from peripheral blood mononuclear cells (PBMCs). However, it requires 100-1000 times more Gram-positive peptidoglycan than Gram-negative lipopolysaccharide to release the same amounts of cytokines from target cells. Thus, either peptidoglycan is poorly active or only part of it is required for PBMC activation. To test this hypothesis, purified Streptococcus pneumoniae walls were digested with their major autolysin N-acetylmuramoyl-L-alanine amidase, and/or muramidase. Solubilized walls were separated by reverse phase high pressure chromatography. Individual fractions were tested for their PBMC-stimulating activity, and their composition was determined. Soluble components had a Mr between 600 and 1500. These primarily comprised stem peptides cross-linked to various extents. Simple stem peptides (Mr <750) were 10-fold less active than undigested peptidoglycan. In contrast, tripeptides (Mr >1000) were >/=100-fold more potent than the native material. One dipeptide (inactive) and two tripeptides (active) were confirmed by post-source decay analysis. Complex branched peptides represented </=2% of the total material, but their activity (w/w) was almost equal to that of LPS. This is the first observation suggesting that peptidoglycan stem peptides carry high tumor necrosis factor-stimulating activity. These types of structures are conserved among Gram-positive bacteria and will provide new material to help elucidate the mechanism of peptidoglycan-induced inflammation.
Resumo:
The most promising developments in the field of isolated limb perfusion have centred around the use of the recombinant cytokine tumour necrosis factor-alpha (rTNF-alpha) in combination with melphalan. While the results of clinical trials are impressive, the exact antitumour mechanisms of rTNF-alpha and its role in combination with melphalan remain unclear. Our aim was to study the antitumour activity of human rTNF-alpha with or without the combination of melphalan in a nude mouse human melanoma xenograft system. In a first attempt to define the maximal tolerated single dose of rTNF-alpha in this setting, 15 animals were exposed to increasing doses of rTNF-alpha (60-2500 microg/kg intraperitoneally). All but one animal survived and tumour growth was not influenced by these single dose applications of rTNF-alpha even at the very high doses. Anti-tumour activity of repeated application of melphalan (three times 9 mg/kg in group 2 and three times 6 mg/kg in group 3), of rTNF-alpha alone (nine doses of 50 microg/kg in group 4), and of rTNF-alpha in combination with melphalan (nine doses of 50 microg/kg rTNF-alpha and three times 6 mg/kg melphalan in group 5) was further compared with non-treated animals (group 1). Tumour growth was significantly inhibited in all animals treated with melphalan (group 2, 3 and 5), but was not decreased in animals treated with rTNF-alpha alone (group 4). Mean final tumour volumes and mean tumour weight were not different in group 2 (789 +/- 836 mm3, 0.38 +/- 0.20 g), group 3 (1173 +/- 591 mm3, 0.55 +/- 0.29 g) and group 5 (230 +/- 632 mm3, 0.37 +/- 0.29 g), but significant lower than group 1 (3156 +/- 1512 mm3, 2.35 +/- 0.90 g) and group 4 (3228 +/- 1990 mm3, 2.00 +/- 1.16 g). There were no significant differences between high and low dose melphalan treatment and between melphalan treatment in combination with rTNF-alpha. Histological examination did not show differences between treated and non-treated animals besides slightly inhibited mitotic activities of tumour cells in melphalan-treated animals. While tumour growth of human xenotransplanted melanoma in nude mice could be inhibited by melphalan, we failed to demonstrate any antitumour effect of rTNF-alpha. The combination of melphalan and rTNF-alpha did not enhance the antiproliferative effect of melphalan alone. Human xenotransplanted tumours on nude mice might not be the ideal experimental setting for studies of potential direct antineoplastic activity of rTNF-alpha, and these results support the concept that TNF-alpha exerts its antitumour activity indirectly, possibly by impairing the tumour vasculature and by activating the immune system.
Resumo:
Abstract APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.
Resumo:
Introduction: Chronic insufficiency alters homeostasis, in part due to endothelial inflammation. Plasminogen activator inhibitor-1 (PAI-1) is increased in renal disease, contributing to vascular damage. We assessed PAI-1 activity and PAI-1 4G/5G polymorphism in hemodialysis (HD) subjects and any association between thrombotic vascular access (VA) events and PAI-1 polymorphism. Methods: Prospective, observational study in 36 HD patients: mean age: 66.6 +/- 12.5 yr, males n=26 (72%), time on HD: 28.71 +/- 22.45 months. Vascular accesses: 10 polytetrafluoroethylene grafts (PTFEG), 22 arteriovenous fistulae (AVF), four dual lumen catheters (CAT). Control group (CG): 40 subjects; mean age: 60.0 +/- 15 yrs, males n=30 (75%). Group A (GA): thrombotic events (n=12), and group B (GB): No events (n=24). Groups were no different according to age (69.2 +/- 9.12 vs. 65.3 +/- 14.5 yrs), gender (males: 7; 58.3% vs. 18; 81.8%), time on HD (26.1 +/- 14.7 vs. 30.1 +/- 38.7 months), causes of renal failure. Time to follow-up, for access thrombosis: 12 months. Results: PAI-1 levels in HD: 7.21 +/- 2.13 vs. CG: 0.42 +/- 0.27 U/ml (p < 0.000 1). PAI-1 4G/5G polymorphic variant distribution in HD: 5G/5G: 6 (17%),4G/5G: 23 (64%); 4G/4G: 7 (19%) and in CG: 5G/5G: 14 (35%); 4G/5G: 18 (45%); 4G/4G: 8 (20%). C-reactive protein (CRP) in HD: 24.5 +/- 15.2 mg/L vs. in CG 2.3 +/- 0.2 mg/L (p < 0.0001). PAI-1 4G/5G variants: GA: 5G/5G: 3; 4G/5G: 8; 4G/4G: 1; GB: 5G/5G: 3; 4G/5G: 15; 4G/4G: 6. Thrombosis occurred in 8/10 patients (80%) with PTFEG, 3/22 (9%) in AVF, and 1/4 (25%) in CAT. Among the eight PTFEG patients with thrombosis, seven were PAI 4G/5G. Conclusions: PAI-1 levels were elevated in HD patients, independent of their polymorphic variants, 4G/5G being the most prevalent variant. Our data suggest that in patients with PTFEG the 4G/5G variant might be associated with an increased thrombosis risk.
Resumo:
Innate immunity reacts to conserved bacterial molecules. The outermost lipopolysaccharide (LPS) of Gram-negative organisms is highly inflammatory. It activates responsive cells via specific CD14 and toll-like receptor-4 (TLR4) surface receptor and co-receptors. Gram-positive bacteria do not contain LPS, but carry surface teichoic acids, lipoteichoic acids and peptidoglycan instead. Among these, the thick peptidoglycan is the most conserved. It also triggers cytokine release via CD14, but uses the TLR2 co-receptor instead of TLR4 used by LPS. Moreover, whole peptidoglycan is 1000-fold less active than LPS in a weight-to-weight ratio. This suggests either that it is not important for inflammation, or that only part of it is reactive while the rest acts as ballast. Biochemical dissection of Staphylococcus aureus and Streptococcus pneumoniae cell walls indicates that the second assumption is correct. Long, soluble peptidoglycan chains (approximately 125 kDa) are poorly active. Hydrolysing these chains to their minimal unit (2 sugars and a stem peptide) completely abrogates inflammation. Enzymatic dissection of the pneumococcal wall generated a mixture of highly active fragments, constituted of trimeric stem peptides, and poorly active fragments, constituted of simple monomers and dimers or highly polymerized structures. Hence, the optimal constraint for activation might be 3 cross-linked stem peptides. The importance of structural constraint was demonstrated in additional studies. For example, replacing the first L-alanine in the stem peptide with a D-alanine totally abrogated inflammation in experimental meningitis. Likewise, modifying the D-alanine decorations of lipoteichoic acids with L-alanine, or deacylating them from their diacylglycerol lipid anchor also decreased the inflammatory response. Thus, although considered as a broad-spectrum pattern-recognizing system, innate immunity can detect very subtle differences in Gram-positive walls. This high specificity underlines the importance of using well-characterized microbial material in investigating the system.
Resumo:
Fucan is a term used to denote a family of sulfated L-fucose-rich polysaccharides which are present in the extracellular matrix of brown seaweed and in the egg jelly coat of sea urchins. Plant fucans have several biological activities, including anticoagulant and antithrombotic, related to the structural and chemical composition of polysaccharides. We have extracted sulfated polysaccharides from the brown seaweed Dictyota menstrualis by proteolytic digestion, followed by separation into 5 fractions by sequential acetone precipitation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. The anticoagulant activity of these heterofucans was determined by activated partial thromboplastin time (APTT) using citrate normal human plasma. Only the fucans F1.0v and F1.5v showed anticoagulant activity. To prolong the coagulation time to double the baseline value in the APTT, the required concentration of fucan F1.0v (20 µg/ml) was only 4.88-fold higher than that of the low molecular weight heparin Clexane® (4.1 µg/ml), whereas 80 µg/ml fucan 1.5 was needed to obtain the same effect. For both fucans this effect was abolished by desulfation. These polymers are composed of fucose, xylose, uronic acid, galactose, and sulfate at molar ratios of 1.0:0.8:0.7:0.8:0.4 and 1.0:0.3:0.4:1.5:1.3, respectively. This is the fist report indicating the presence of a heterofucan with higher anticoagulant activity from brown seaweed.
Resumo:
The brown algae Padina gymnospora contain different fucans. Powdered algae were submitted to proteolysis with the proteolytic enzyme maxataze. The first extract of the algae was constituted of polysaccharides contaminated with lipids, phenols, etc. Fractionation of the fucans with increasing concentrations of acetone produced fractions with different proportions of fucose, xylose, uronic acid, galactose, and sulfate. One of the fractions, precipitated with 50% acetone (v/v), contained an 18-kDa heterofucan (PF1), which was further purified by gel-permeation chromatography on Sephadex G-75 using 0.2 M acetic acid as eluent and characterized by agarose gel electrophoresis in 0.05 M 1,3 diaminopropane/acetate buffer at pH 9.0, methylation and nuclear magnetic resonance spectroscopy. Structural analysis indicates that this fucan has a central core consisting mainly of 3-ß-D-glucuronic acid 1-> or 4-ß-D-glucuronic acid 1 ->, substituted at C-2 with alpha-L-fucose or ß-D-xylose. Sulfate groups were only detected at C-3 of 4-alpha-L-fucose 1-> units. The anticoagulant activity of the PF1 (only 2.5-fold lesser than low molecular weight heparin) estimated by activated partial thromboplastin time was completely abolished upon desulfation by solvolysis in dimethyl sulfoxide, indicating that 3-O-sulfation at C-3 of 4-alpha-L-fucose 1-> units is responsible for the anticoagulant activity of the polymer.