870 resultados para Multiple antibiotic resistance
Resumo:
The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability
Resumo:
Since 1990 multiresistant (MR) Salmonella enterica serotype Typhimurium definitive phage-type (DT) 104 (MR DT104) and closely related phage types have emerged as a worldwide health problem in humans and food animals. In this study the presence of the bla(CARB-2) (ampicillin), cmlA (chloramphenicol), aadA2 (streptomycin/spectinomycin), sul1 (sulphonamide), and tetG (tetracycline) resistance genes in isolates of one such phage type, U302, have been determined. In addition bla(TEM) I primers have been used for the detection of TEM-type beta-lactamases. Isolates have also been characterized by plasmid profile and pulsed field gel electrophoresis (PFGE). Thirty-three of 39 isolates were positive for blaCARB-2, cmlA, aadA2, sul1 and tetG, four for bla(TEM), aadA2 and sul1, one for aadA2 and sul1, and one for blaTEM only. bla(TEM)-mediated ampicillin resistance was transferred to Escherichia coli K12 from three isolates along with other resistance markers, including resistance to chloramphenicol, streptomycin, spectinomycin, sulphonamides, and tetracyclines. Strains carried up to 6 plasmids and 34 plasmid profiles were identified. Although the majority of strains (33/39) produced a PFGE profile identical to that predominant in MR DT104, six different patterns were generated demonstrating the presence of various clones within MR U302. The results show that the majority of the MR U302 strains studied possessed the same antibiotic resistance genes as MR DT104. However, isolates with distinctive PFGE patterns can have different mechanisms of resistance to ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracyclines. Such resistance genes may be borne on transmissible plasmids.
Resumo:
Salmonella enterica isolates (n = 182) were examined for mutations in the quinolone resistance-determining region of gyrA, gyrB, parC, and parE. The frequency, location, and type of GyrA substitution varied with the serovar. Mutations were found in parC that encoded Thr57-Ser, Thr66-Ile, and Ser80-Arg substitutions. Mutations in the gyrB quinolone resistance-determining region were located at codon Tyr420-Cys or Arg437-Len. Novel mutations were also found in parE encoding Glu453-Gly, His461-Tyr, Ala498-Thr, Val512-Gly, and Ser518-Cys. Although it is counterintuitive, isolates with a mutation in both gyrA and parC were more susceptible to ciprofloxacin than were isolates with a mutation in gyrA alone.
Resumo:
Poorer people are more likely to use antibiotics; inappropriate antibiotic use causes resistance, and health campaigns attempt to change behaviour through education. However, fuelled by the media, the public think antibiotic resistance is outside their control. Differences in the attribution of blame for antibiotic resistance in two genres of UK newspapers, targeting distinct socioeconomic groups, were examined using a mixed methods approach. Firstly, depiction of blame was categorised as either external to the lay public (outside their control) or internal (lay person accountable) and subjected to a chi-square test. Secondly, using critical discourse analysis, we examined the portrayal of the main agents through newspaper language. Data from 597 articles (307 broadsheets) analysed revealed a significant association between newspaper genre and attribution of blame for antibiotic resistance. While both newspaper types blamed antibiotic resistance predominantly on factors external to the lay public, broadsheets were more likely to acknowledge internal factors than tabloids. Tabloids provided a more skewed representation, exposing readers to inaccurate explanations about antibiotic resistance. They highlighted ineptitude in health professionals, victimising patients and blaming others, while broadsheets used less emotive language. Pharmacists should take special care to communicate the importance of appropriate antibiotic use against this backdrop of distortion.
Resumo:
The use of antibiotics in birds and animals intended for human consumption within the European Union (EU) and elsewhere has been subject to regulation prohibiting the use of antimicrobials as growth promoters and the use of last resort antibiotics in an attempt to reduce the spread of multi-resistant Gram negative bacteria. Given the inexorable spread of antibiotic resistance there is an increasing need for improved monitoring of our food. Using selective media, Gram negative bacteria were isolated from retail chicken of UK-Intensively reared (n = 27), Irish-Intensively reared (n = 19) and UK-Free range (n = 30) origin and subjected to an oligonucleotide based array system for the detection of 47 clinically relevant antibiotic resistance genes (ARGs) and two integrase genes. High incidences of β-lactamase genes were noted in all sample types, acc (67%), cmy (80%), fox (55%) and tem (40%) while chloramphenicol resistant determinants were detected in bacteria from the UK poultry portions and were absent in bacteria from the Irish samples. Denaturing Gradient Gel Electrophoresis (DGGE) was used to qualitatively analyse the Gram negative population in the samples and showed the expected diversity based on band stabbing and DNA sequencing. The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population.
Resumo:
Since the development of the first antibiotics in the 1940’s, there has been widespread overuse in both clinical and agricultural applications. Antibiotic resistance has become a significant problem as a result of subsequent dissemination of antibiotics into the environment, and multiply-resistant strains of bacteria are now a major pathogenic threat. In this study eight separate strains of Flavobacterium responsible for recent disease outbreaks in fish hatcheries throughout Maine were collected and analyzed. All eight strains were found to be resistant to high levels of a number of different antibiotics, including those used for aquaculture as well as human chemotherapeutic applications. Flavobacterium isolates were also shown phenotypically to transfer antibiotic resistance determinants using a conjugation mating system in which Flavobacterium was the donor and Escherichia coli DH5- alpha was the recipient. This experiment suggests that it may be possible for Flavobacterium strains to transfer their multiple antibiotic resistance determinants to human pathogenic bacterial strains. Importantly, none of the hatcheries from which the Flavobacterium isolates were obtained had ever used antibiotics to treat their fish stock. It is possible that there is another selective agent responsible for the development of antibiotic resistance in the absence of antibiotic pressure. Mercury is one possible candidate, as all of the strains tested were resistant to mercuric chloride and it is known that genes encoding antibiotic resistance can be carried on the same mobile genetic elements that encode for mercury resistance. Preliminary data also suggest that the majority of the Flavobacterium isolates contain genes for mercuric ion reduction, which would confirm the mercury resistance genotype.
Resumo:
Bacterial isolates from natural sites with high toxic and heavy metal contamination more frequently contain determinants for resistance to antimicrobials. Natural strains were isolated from the ingesta and external slime of Salmo salar (Linnaeus, 1758) and Salvelinusjontinalis (Mitchell, 1814). Fish specimens were acquired from Casco Bay hatcheries, Casco, ME where there is no history of antibiotic use. Seventy-nine bacterial strains, including many well-documented salmonid commensals (an association from which the fish derives no benefit), were identified using 165 rRNA gene sequencing. Mercury resistant isolates were selected for initially on 25μM HgCI2. Strains were then grown at 20-24°C on Trypticase Soy Agar (TSA) plates containing 0-1000μM HgCl2 or 0-130μM Phenyl Mercuric Acetate (PMA). Mercury in the hatchery feed water due to ubiquitous non-point source deposition has selected for the mercury resistance observed in bacterial strains. Antibiotic resistance determinations, as measured by Minimum Inhibitory Concentration MIC) assays were performed on the 79 bacterial isolates using Sensititrel antimicrobial susceptibility panels. A positive linear correlation between the mercury (pMA and HgCl2) MIC's and antibiotic resistance for all observed strains was demonstrated. Conjugation experiments with Pseudomonas, Aeromonas, and Azomonas donors confirmed phenotypic transfer of penicillin and cephem resistances to Escherichia coli DH5a recipients. Conjugation experiments with Pseudomonas donors showed minimal transfer of tetracycline and minoglycoside resistances to Escherichia coli DH5a recipients. Our study suggests that the accumulation of antimicrobial resistances observed in these natural bacterial populations may be due to the indirect selective pressure exerted by environmental mercury.
Resumo:
The aim of the study was to evaluate the need for active surveillance of antibiotic resistance in ambulatory infections. We measured the prevalence of antibiotic resistance in urinary tract infections (UTIs) (n = 1018) and skin infections (n = 213) diagnosed in outpatients between September 2008 and February 2009 in the Canton of Bern, Switzerland. Samples were stratified into 'solicited' (diagnostic work-up for study purpose only) and 'routine' (diagnostic work-up as part of standard care). Susceptibility patterns were compared for 463 Escherichia coli isolates from UTIs (231 solicited; 232 routine) and 87 Staphylococcus aureus isolates from skin infections (35 solicited; 52 routine). Overall, E. coli showed higher susceptibility to ampicillin, amoxicillin-clavulanic acid and norfloxacin in solicited than in routine samples. Among 15-45-year-old patients, susceptibility rates were comparable between solicited and routine samples for all antibiotics except for amoxicillin-clavulanic acid. However, among patients >45 years old, isolates from routine samples showed lower susceptibility to all β-lactams tested and quinolones than those from solicited samples. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were rare (solicited, 0.4%; routine, 1.7%; p 0.4). Susceptibility patterns of S. aureus were comparable between solicited and routine samples. Therefore, in the outpatient setting, susceptibility rates for E. coli isolates differ by indication for urinary culture and age. Surveillance based on samples taken during standard care may underestimate susceptibility rates for uncomplicated infections, especially among the elderly. Reports of resistance data should include age stratification.
Resumo:
AIMS: To get an overview of genotypes and antibiotic resistances in Swiss Campylobacter jejuni implicated in human gastroenteritis and to examine the association with isolates from chickens. METHODS AND RESULTS: Multilocus sequence typing (MLST) and flaB typing were applied to 136 human clinical isolates. Phenotypic resistance to 12 antimicrobials and genotypic resistance to macrolides and quinolones were determined. MLST resulted in 35 known and six new sequence types (ST). The flaB analysis revealed 35 different types, which - in combination with MLST - increased the resolution of the typing approach. Resistance to quinolones, tetracycline and ampicillin was found in 37.5, 33.1 and 8.1% of the isolates, respectively, whereas macrolide resistance was found only once. Genotypic and phenotypic resistance correlated in all cases. A comparison to Camp. jejuni isolated from slaughtered chickens was performed. While 86% of the quinolone-sensitive human isolates showed overlapping MLST-flaB types with those of chicken origin, resistant strains showed only 39% of matching types. CONCLUSION: Mainly quinolone-sensitive Camp. jejuni strains implicated in human campylobacteriosis showed matching genotypes with isolates originating from chickens. SIGNIFICANCE AND IMPACT OF THE STUDY: A large proportion of human cases in Switzerland are likely to originate from domestic chickens, confirming that prevention measures in the poultry production are important.
Resumo:
New tetracycline and streptomycin resistance genes, tet(44) and ant(6)-Ib, were identified in Campylobacter fetus subsp. fetus within a transferable pathogenicity island that is typically unique to Campylobacter fetus subsp. venerealis. The 640-amino-acid tetracycline resistance determinant, Tet 44, belongs to a class of proteins that confers resistance to tetracycline and minocycline by ribosomal protection. The 286-amino-acid streptomycin resistance determinant, ANT(6)-Ib, belongs to a family of aminoglycoside nucleotidyltransferases. The resistance phenotypes were demonstrated by gene inactivation and expression.
Resumo:
To obtain genetic information about Campylobacter jejuni and Campylobacter coli from broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were collected in 2008 from the cecum right after slaughter or from the neck skin after processing. We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The MLST analysis revealed that there were 59 known sequence types (STs) and 6 newly defined STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry (CC21, CC45, CC257, and CC828), and these represented 61.8% of all of the investigated isolates. The analysis of 95 isolates from the cecum and from the corresponding carcass neck skin covered 44 different STs, and 54.7% of the pairs had matching genotypes. The data indicate that cross-contamination from various sources during slaughter may occur, although the majority of Campylobacter contamination on carcasses appeared to originate from the slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli isolates, although no mutations were found in C. jejuni isolates. Mutations in the gyrA gene were observed in 18.9% of C. jejuni and 26.8% of C. coli isolates, which included two C. coli strains that carried mutations conferring resistance to both classes of antibiotics. A relationship between specific genotypes and antibiotic resistance/susceptibility was observed.
Resumo:
Staphylococcus rostri is a newly described Staphylococcus species that is present in the nasal cavity of healthy pigs. Out of the 225 pigs tested at slaughterhouse, 46.7% carried the new species alone and 22% in combination with Staphylococcus aureus. An antibiotic resistance profile was determined for S. rostri and compared to that of S. aureus isolated from the same pig. Resistance to tetracycline specified by tet(M), tet(K) and tet(L), streptomycin (str(pS194)), penicillin (blaZ), trimethoprim (dfr(G)), and erythromycin and clindamycin (erm genes), were found in both species; however, with the exception of streptomycin and trimethoprim, resistance was higher in S. aureus. S. rostri isolates display very low genetic diversity as demonstrated by pulsed-field gel electrophoresis, which generated two major clusters. Several clonal complexes (CC1, CC5, CC9, CC30 and CC398) were identified in S. aureus with CC 9 and CC 398 being the most frequent. Our study gives the first overview of the distribution, genetic relatedness, and resistance profile of one coagulase-negative Staphylococcus species that is commonly present in the nares of healthy pigs in Switzerland, and shows that S. rostri may harbor resistance genes associated with transferable elements like Tn916.