961 resultados para Multiphase flow. Pressure gradient. Temperature gradient. Multiphase flow simulator. Empirical correlations. Mechanistic model
Resumo:
A systematic diagrammatic expansion for Gutzwiller wavefunctions (DE-GWFs) proposed very recently is used for the description of the superconducting (SC) ground state in the two-dimensional square-lattice t-J model with the hopping electron amplitudes t (and t') between nearest (and next-nearest) neighbors. For the example of the SC state analysis we provide a detailed comparison of the method's results with those of other approaches. Namely, (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results and (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed 'grand-canonical Gutzwiller approximation' (called either GCGA or SGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a d(x2-y2) wave only for optimally and overdoped systems, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the
Resumo:
There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional-structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length: width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is 'ideal' in a given environment.
Resumo:
The present study has attempted to investigate phase inversion and frictional pressure gradients during simultaneous vertical flow of oil and water two-phase through upward and downward pipes. The liquids selected were white oil (44 mPa s viscosity and 860 kg/m3 density) and water. The measurements were made for phase velocities varying from 0 to 1.24 m/s for water and from 0 to 1.87 m/s for oil, respectively. Experiments were carried either by keeping the mixture velocity constant and increasing the dispersed phase fraction or by keeping the continuous phase superficial velocity constant and increasing the dispersed phase superficial velocity. From the experimental results, it is shown that the frictional pressure gradient reaches to its lower value at the phase inversion point in this work. The points of phase inversion are always close to an input oil fraction of 0.8 for upward flow and of 0.75 for downward flow, respectively. A few models published in the literature are used to predict the phase inversion point and to compare the results with available experimental data. Suitable methods are suggested to predict the critical oil holdup at phase inversion based on the different viscosity ratio ranges. Furthermore, the frictional pressure gradient is analyzed with several suitable theoretical models according to the existing flow patterns. The analysis reveals that both the theoretical curves and the experimental data exhibit the same trend and the overall agreement of predicted values with experimental data is good, especially for a high oil fraction.
Resumo:
This paper critically analyzes, for the first time, the effect of nanofluid on thermally fully developed magnetohydrodynamic flows through microchannel, by considering combined effects of externally applied pressure gradient and electroosmosis. The classical boundary condition of uniform wall heat flux is considered, and the effects of viscous dissipation as well as Joule heating have been taken into account. Closed-form analytical expressions for the pertinent velocity and temperature distributions and the Nusselt number variations are obtained, in order to examine the role of nanofluids in influencing the fully developed thermal transport in electroosmotic microflows under the effect of magnetic field. Fundamental considerations are invoked to ascertain the consequences of particle agglomeration on the thermophysical properties of the nanofluid. The present theoretical formalism addresses the details of the interparticle interaction kinetics in tune with the pertinent variations in the effective particulate dimensions, volume fractions of the nanoparticles, as well as the aggregate structure of the particulate system. It is revealed that the inclusion of nanofluid changes the transport characteristics and system irreversibility to a considerable extent and can have significant consequences in the design of electroosmotically actuated microfluidic systems.
Resumo:
An experimental study on drag-reduction phenomenon in dispersed oil-water flow has been performed in a 26-mm-i.d. Twelve meter long horizontal glass pipe. The flow was characterized using a novel wire-mesh sensor based on capacitance measurements and high-speed video recording. New two-phase pressure gradient, volume fraction, and phase distribution data have been used in the analysis. Drag reduction and slip ratio were detected at oil volume fractions between 10 and 45% and high mixture Reynolds numbers, and with water as the dominant phase. Phase-fraction distribution diagrams and cross-sectional imaging of the flow suggested the presence of a higher amount of water near to the pipe wall. Based on that, a phenomenology for explaining drag reduction in dispersed flow in a flow situation where slip ratio is significant is proposed. A simple phenomenological model is developed and the agreement between model predictions and data, including data from the literature, is encouraging. (c) 2011 American Institute of Chemical Engineers AIChE J, 2012
Resumo:
A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.
Resumo:
The nonsimilar non-Darcy mixed convection flow about a heated horizontal surface in a saturated porous medium has been studied when the surface temperature is a power function of distance (Tw = T∞ ± Axλ). The analysis is performed for the cases of parallel and stagnation flows with favourable induced pressure gradient. The partial differential equations governing the flow have been solved numerically using the Keller box method. The heat transfer is enhanced due to the buoyancy parameter and wall temperature, but the non-Darcy parameter reduces it. For non-Darcy flow, the similarity solution exists only for the case of parallel flow.
Resumo:
Reliable bench mark experimental database in the separated hypersonic flow regime is necessary to validate high resolution CFD codes. In this paper we report the surface pressure and heat transfer measurements carried out on double cones (first cone semi-apex angle = 15, 25 deg.; second cone semi-apex angle= 35, 68 deg.) at hypersonic speeds that will be useful for CFD code validation studies. The surface pressure measurements are carried out at nominal Mach number of 8.35 in the IISc hypersonic wind tunnel. On the other hand the surface heat transfer measurements are carried out at a nominal Mach number of 5.75 in the IISc hypersonic shock tunnel. The flow separation point on the first cone, flow reattachment on the second cone and the wild fluctuation of the transmitted shock on the second cone surface (25/68 deg. double cone) in the presence of severe adverse pressure gradient are some of the flow features captured in the measurements. The results from the CFD studies indicate good agreement with experiments in the attached flow regime while considerable differences are noticeable in the separated flow regime.
Resumo:
It is obvious that the pressure gradient alone, the axial direction in a pipe flow keeps constant according to the Haoen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure seemed no longer linear for liquid flows in microtubes driven by high pressure (1-30MPa). Based on H-P equation with slip boundary condition and Bridgman's relation of viscosity vs. static pressure, the nonlinear distribution of pressure along the axial direction is analyzed in this paper. The revised standard Poiseuille number with the effect of pressure-dependent viscosity taken into account agrees well with the experimental results. Therefore, the dependence of the viscosity on the pressure is one of the dominating, factors under high driven pressure, and is represented by an important property coefficient et of the liquid.
Resumo:
Annular flow is the prevailing pattern in transport and energy conversion systems and therefore, one of the most important patterns in multiphase flow in ducts. The correct prediction of the pressure gradient and heat transfer coefficient is essential for optimizing the system s capacity. The objective of this work is to develop and implement a numerical algorithm capable of predicting hydrodynamic and thermal characteristics for upflow, vertical, annular flow. The numerical algorithm is then complemented with the physical modeling of phenomena that occurs in this flow pattern. These are, turbulence, entrainment and deposition and phase change. For the development of the numerical model, axial diffusion of heat and momentum is neglected. In this way the time-averaged equations are solved in their parabolic form obtaining the velocity and temperature profiles for each axial step at a time, together with the global parameters, namely, pressure gradient, mean film thickness and heat transfer coefficient, as well as their variation in the axial direction. The model is validated for the following conditions: fully-developed laminar flow with no entrainment; fully developed laminar flow with heat transfer, fully-developed turbulent flow with entrained drops, developing turbulent annular flow with entrained drops, and turbulent flow with heat transfer and phase change
Resumo:
This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.
Resumo:
On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras-ZF2-02 degrees 36'17.1 '' S, 60 degrees 12'24.4 '' W), subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tota et al. (2008) was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The microcirculations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e. g., CO2) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates.
Resumo:
In oil and gas pipeline operations, the gas, oil, and water phases simultaneously move through pipe systems. The mixture cools as it flows through subsea pipelines, and forms a hydrate formation region, where the hydrate crystals start to grow and may eventually block the pipeline. The potential of pipe blockage due to hydrate formation is one of the most significant flow-assurance problems in deep-water subsea operations. Due to the catastrophic safety and economic implications of hydrate blockage, it is important to accurately predict the simultaneous flow of gas, water, and hydrate particles in flowlines. Currently, there are few or no studies that account for the simultaneous effects of hydrate growth and heat transfer on flow characteristics within pipelines. This thesis presents new and more accurate predictive models of multiphase flows in undersea pipelines to describe the simultaneous flow of gas, water, and hydrate particles through a pipeline. A growth rate model for the hydrate phase is presented and then used in the development of a new three-phase model. The conservation equations of mass, momentum, and energy are formulated to describe the physical phenomena of momentum and heat transfer between the fluid and the wall. The governing equations are solved based on an analytical-numerical approach using a Newton-Raphson method for the nonlinear equations. An algorithm was developed in Matlab software to solve the equations from the inlet to the outlet of the pipeline. The developed models are validated against a single-phase model with mixture properties, and the results of comparative studies show close agreement. The new model predicts the volume fraction and velocity of each phase, as well as the mixture pressure and temperature profiles along the length of the pipeline. The results from the hydrate growth model reveal the growth rate and location where the initial hydrates start to form. Finally, to assess the impact of certain parameters on the flow characteristics, parametric studies have been conducted. The results show the effect of a variation in the pipe diameter, mass flow rate, inlet pressure, and inlet temperature on the flow characteristics and hydrate growth rates.
Resumo:
This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.