1000 resultados para Multiparametric measurements
Resumo:
Much interest surrounds the effect of extracellular matrix (ECM) elasticity on cell behavior. Here we present a rapid method for measuring the elasticity of synthetic ECM substrates based on indentation of the substrate with a ferromagnetic sphere and optical tracking of the resulting deformation. We find that this method yields order-of-magnitude agreement with atomic force microscopy elasticity measurements, but that the degree of this agreement depends strongly on sphere density and gel elasticity. In its regime of greatest accuracy, we envision that this method may be used for high-throughput characterization of ECM substrates in cell biological studies.
Resumo:
Ground-penetrating radar (GPR) is widely used for assessment of soil moisture variability in field soils. Because GPR does not measure soil water content directly, it is common practice to use calibration functions that describe its relationship with the soil dielectric properties and textural parameters. However, the large variety of models complicates the selection of the appropriate function. In this article an overview is presented of the different functions available, including volumetric models, empirical functions, effective medium theories, and frequency-specific functions. Using detailed information presented in summary tables, the choice for which calibration function to use can be guided by the soil variables available to the user, the frequency of the GPR equipment, and the desired level of detail of the output. This article can thus serve as a guide for GPR practitioners to obtain soil moisture values and to estimate soil dielectric properties.
Resumo:
Background Despite the commonality of cough and its burden, there are no published data on the relationship between atopy or sex on objectively measured cough frequency or subjective cough scores in children. In 202 children with and without cough, we determined the effect of sex and atopy on validated cough outcome measurements (cough receptor sensitivity [CRS], objective cough counts, and cough scores). We hypothesized that in contrast to adult data, sex does not influence cough outcome measures, and atopy is not a determinant of these cough measurements. Methods We combined data from four previous studies. Atopy (skin prick test), the concentration of capsaicin causing two and five or more coughs (C2 and C5, respectively), objectively measured cough frequency, and cough scores were determined and their relationship explored. The children’s (93 girls, 109 boys) mean age was 10.6 years (SD 2.9), and 56% had atopy. Results In multivariate analysis, CRS was influenced by age (C2 coefficient, 5.9; P = .034; C5 coefficient, 29.1; P = .0001). Atopy and sex did not significantly influence any of the cough outcomes (cough counts, C2, C5, cough score) in control subjects and children with cough. Conclusions Atopy does not influence important cough outcome measures in children with and without chronic cough. However, age, but not sex, influences CRS in children. Unlike adult data, sex does not affect objective counts or cough score in children with and without chronic cough. Studies on cough in children should be age matched, but matching for atopic status and sex is less important.
Resumo:
Introduction Due to their high spatial resolution diodes are often used for small field relative output factor measurements. However, a field size specific correction factor [1] is required and corrects for diode detector over-response at small field sizes. A recent Monte Carlo based study has shown that it is possible to design a diode detector that produces measured relative output factors that are equivalent to those in water. This is accomplished by introducing an air gap at the upstream end of the diode [2]. The aim of this study was to physically construct this diode by placing an ‘air cap’ on the end of a commercially available diode (the PTW 60016 electron diode). The output factors subsequently measured with the new diode design were compared to current benchmark small field output factor measurements. Methods A water-tight ‘cap’ was constructed so that it could be placed over the upstream end of the diode. The cap was able to be offset from the end of the diode, thus creating an air gap. The air gap width was the same as the diode width (7 mm) and the thickness of the air gap could be varied. Output factor measurements were made using square field sizes of side length from 5 to 50 mm, using a 6 MV photon beam. The set of output factor measurements were repeated with the air gap thickness set to 0, 0.5, 1.0 and 1.5 mm. The optimal air gap thickness was found in a similar manner to that proposed by Charles et al. [2]. An IBA stereotactic field diode, corrected using Monte Carlo calculated kq,clin,kq,msr values [3] was used as the gold standard. Results The optimal air thickness required for the PTW 60016 electron diode was 1.0 mm. This was close to the Monte Carlo predicted value of 1.15 mm2. The sensitivity of the new diode design was independent of field size (kq,clin,kq,msr = 1.000 at all field sizes) to within 1 %. Discussion and conclusions The work of Charles et al. [2] has been proven experimentally. An existing commercial diode has been converted into a correction-less small field diode by the simple addition of an ‘air cap’. The method of applying a cap to create the new diode leads to the diode being dual purpose, as without the cap it is still an unmodified electron diode.
Resumo:
A unique high temporal frequency dataset from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N2O fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. A 25 year scenario analysis indicated that N2O losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e. frequent irrigation, avoidance of excessive fertiliser application), while sustaining maximum yield potentials.
SWIRLnet : portable anemometer network for wind speed measurements of land-falling tropical cyclones
Resumo:
Wind speed measurement systems are sparse in the tropical regions of Australia. Tropical cyclone wind speeds impacting communities are often ‘guestimated’ from analyzing damaged structures. A re-locatable anemometer system is required to enable measurements of wind speeds. This paper discusses design criteria of the tripods and tie down system, proposed deployment of the anemometers, instrumentation, and data logging. Preliminary assessment of the anemometer response indicates a reliable system for 1 second response, however, it is noted that the Australian building code and wind loading standard uses a moving average time of approximately 0.2 seconds for its wind speed design criteria.
Resumo:
Wind speed measurement systems are sparse in the tropical regions of Australia. Given this, tropical cyclone wind speeds impacting communities are seldom measured and often only ‘guestimated’ by analysing the extent of damage to structures. In an attempt to overcome this dearth of data, a re-locatable network of anemometers to be deployed prior to tropical cyclone landfall is currently being developed. This paper discusses design criteria of the network’s tripods and tie down system, proposed deployment of the anemometers, instrumentation and data logging. Preliminary assessment of the anemometer response indicates a reliable system for measuring the spectral component of wind with frequencies of approximately 1 Hz. This system limitation highlights an important difference between the capabilities of modern instrumentation and that of the Dines anemometer (around 0.2 seconds) that was used to develop much of the design criteria within the Australian building code and wind loading standard.
Resumo:
The wind loading on most structural elements is made up of both an external and internal pressure. Internal pressures are also important for the design of naturally ventilated buildings. The internal pressure is the interaction between the external pressure propagating through the building envelope and any internal plant causing building pressurization. Although the external pressure field can be well defined through a series of wind tunnel tests, modeling complexities makes accurate prediction of the internal pressure difficult. For commercial testing for the determination of design cladding pressures, an internal pressure coefficient is generally assumed from wind loading standards. Several theories regarding the propagation of internal pressures through single and multiple dominant openings have been proposed for small and large flexible buildings (Harris (1990), Holmes, (1979), Liu & Saathoff (1981 ), Vickery (1986, 1994), Vickery & Bloxham (1992), Vickery & Georgiou (1991))...
Resumo:
Analysis of the particulate size and number concentration emissions from a fleet of inner city medium duty CNG buses was conducted using the newly available Diffusion Size Classifier in comparison with more traditional SMPS's and CPC's. Studies were conducted at both steady state and transient driving modes on a vehicle dynamometer utilising a CVS dilution system. Comparative analysis of the results showed that the DiSC provided equivalent information during steady state conditions and was able to provide additional information during transient conditions, namely, the modal diameter of the particle size distribution.
Resumo:
Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.
Resumo:
Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.
Resumo:
Metastasis accounts for the poor prognosis of the majority of solid tumors. The phenotypic transition of nonmotile epithelial tumor cells to migratory and invasive “mesenchymal” cells (epithelial-to-mesenchymal transition [EMT]) enables the transit of cancer cells from the primary tumor to distant sites. There is no single marker of EMT; rather, multiple measures are required to define cell state. Thus, the multiparametric capability of high-content screening is ideally suited for the comprehensive analysis of EMT regulators. The aim of this study was to generate a platform to systematically identify functional modulators of tumor cell plasticity using the bladder cancer cell line TSU-Pr1-B1 as a model system. A platform enabling the quantification of key EMT characteristics, cell morphology and mesenchymal intermediate filament vimentin, was developed using the fluorescent whole-cell-tracking reagent CMFDA and a fluorescent promoter reporter construct, respectively. The functional effect of genome-wide modulation of protein-coding genes and miRNAs coupled with those of a collection of small-molecule kinase inhibitors on EMT was assessed using the Target Activation Bioapplication integrated in the Cellomics ArrayScan platform. Data from each of the three screens were integrated to identify a cohort of targets that were subsequently examined in a validation assay using siRNA duplexes. Identification of established regulators of EMT supports the utility of this screening approach and indicated capacity to identify novel regulators of this plasticity program. Pathway analysis coupled with interrogation of cancer-related expression profile databases and other EMT-related screens provided key evidence to prioritize further experimental investigation into the molecular regulators of EMT in cancer cells.
Resumo:
To enhance the efficiency of regression parameter estimation by modeling the correlation structure of correlated binary error terms in quantile regression with repeated measurements, we propose a Gaussian pseudolikelihood approach for estimating correlation parameters and selecting the most appropriate working correlation matrix simultaneously. The induced smoothing method is applied to estimate the covariance of the regression parameter estimates, which can bypass density estimation of the errors. Extensive numerical studies indicate that the proposed method performs well in selecting an accurate correlation structure and improving regression parameter estimation efficiency. The proposed method is further illustrated by analyzing a dental dataset.
Resumo:
In an estuary, mixing and dispersion are the result of the combination of large scale advection and small scale turbulence which are both complex to estimate. A field study was conducted in a small sub-tropical estuary in which high frequency (50 Hz) turbulent data were recorded continuously for about 48 hours. A triple decomposition technique was introduced to isolate the contributions of tides, resonance and turbulence in the flow field. A striking feature of the data set was the slow fluctuations which exhibited large amplitudes up to 50% the tidal amplitude under neap tide conditions. The triple decomposition technique allowed a characterisation of broader temporal scales of high frequency fluctuation data sampled during a number of full tidal cycles.