929 resultados para Multicolor Pump-probe
Resumo:
The effect of laser fields on the NO interaction potentials is obtained by the calculation of time-resolved photoelectron spectrum (TRPES) using the time-dependent wave-packet method. The calculation not only shows that the overlap of the pump-probe pulses makes some NO molecular "invisible" states visible, but also that the coupling strength and the positions of relevant curves change on increasing the laser intensity. These changed potentials affect their dynamical behavior and influence the shape and position of each peak in TRPES. That the coupling strength of relevant potentials can be changed by the field-matter interaction is consistent with our ab initio calculations.
Resumo:
Multiphoton ionization of NO via intermediate Rydberg states with ultra-short laser pulses is investigated with time-resolved photoelectron spectroscopy in combination with fermosecond pump-probe technology. The Rydberg states of NO, which are characterized by obvious ac-Stark shift in ultra-strong laser field, can be tuned in resonance to ionize NO molecule at one's will with identical laser pulses, i.e., one can 'select' resonance path to ionization. The results shown in this Letter demonstrate that the states holding notable dynamic Stark shift provide us another dimension to chemical control with strong laser field. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
By using the home-made femtosecond laser system and the time-of-flight mass spectrometer, the decay dynamics of excited carbon disulfide (CS2) and ammonia (NH3) are investigated in real time by pump-probe multiphoton ionization detection. The estimated lifetime constant of the NH3 (A) over tilde (1)A(2)' state (51+/-4 fs) agreed quite well with the literature report. For the first time, the decay lifetime constants of the NH3 (E) over tilde'(1)A(1)' state (937+/-93 fs), the CS2 (a) over tilde (3)A(2) state (153+/-10 fs), and the CS2 Rydberg state [(3)/(2)]6ssigma(g) ((3)Pi(g)) (948+/-23 fs) are obtained.
Resumo:
The predissociation decay behavior of molecule carbonyl sulfide (OCS) has been investigated by resonance-enhanced multiphoton ionization spectroscopy using the pump-probe technique of dichroic femtosecond lasers in real time. The lifetime of excited OCS around 74 720 cm(-1) by two-photon absorption of 268 nm, corresponding to upsilon(1)=1 of the Rydberg state [(2)Pi(1/2)]4ppi((1)Sigma(+)), is directly determined to be tau(D)=1071+/-11 fs. This picosecond decay process indicates that the excited state is predissociative. The temporal information of dissociation enriches the knowledge of the potential-energy surface of the associative excited state.
Resumo:
De-excited dynamics of p-chlorotoluene and p-dichlorobenzene have been investigated by the femtosecond pump-probe method in a supersonic molecular beam. The yields of the parent ion and daughter ion are examined as a function of the delay time between the pump and probe laser pulses. The lifetime constants of excited p-chlorotoluene and p-dichlorobenzene are determined. Possible de-excitation mechanisms are suggested that the initially excited S-1 state is predissociative via the repulsive triplet state. The substituent effects of additional chlorine atom and methyl group are discussed. Moreover, for the first time, we observe a novel quantum beat oscillation in p-dichlorobenzene. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Poolton, Nigel; Towlson, B.M.; Hamilton, B.; Evans, D.A., (2006) 'Synchrotron-laser interactions in hexagonal boron nitride: an examination of charge trapping dynamics at the boron K-edge', New Journal of Physics 8 pp.76 RAE2008
Resumo:
Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pressure on existing core router infrastructure. To implement optical signal processing functionalities, it is necessary to exploit the nonlinear optical properties of suitable materials such as III-V semiconductor compounds, silicon, periodically-poled lithium niobate (PPLN), highly nonlinear fibre (HNLF) or chalcogenide glasses. However, nonlinear optical (NLO) components such as semiconductor optical amplifiers (SOAs), electroabsorption modulators (EAMs) and silicon nanowires are the most promising candidates as all-optical switching elements vis-à-vis ease of integration, device footprint and energy consumption. This PhD thesis presents the amplitude and phase dynamics in a range of device configurations containing SOAs, EAMs and/or silicon nanowires to support the design of all optical switching elements for deployment in next-generation optical networks. Time-resolved pump-probe spectroscopy using pulses with a pulse width of 3ps from mode-locked laser sources was utilized to accurately measure the carrier dynamics in the device(s) under test. The research work into four main topics: (a) a long SOA, (b) the concatenated SOA-EAMSOA (CSES) configuration, (c) silicon nanowires embedded in SU8 polymer and (d) a custom epitaxy design EAM with fast carrier sweepout dynamics. The principal aim was to identify the optimum operation conditions for each of these NLO device configurations to enhance their switching capability and to assess their potential for various optical signal processing functionalities. All of the NLO device configurations investigated in this thesis are compact and suitable for monolithic and/or hybrid integration.
Resumo:
This thesis details an experimental and simulation investigation of some novel all-optical signal processing techniques for future optical communication networks. These all-optical techniques include modulation format conversion, phase discrimination and clock recovery. The methods detailed in this thesis use the nonlinearities associated with semiconductor optical amplifiers (SOA) to manipulate signals in the optical domain. Chapter 1 provides an introduction into the work detailed in this thesis, discusses the increased demand for capacity in today’s optical fibre networks and finally explains why all-optical signal processing may be of interest for future optical networks. Chapter 2 discusses the relevant background information required to fully understand the all-optical techniques demonstrated in this thesis. Chapter 3 details some pump-probe measurement techniques used to calculate the gain and phase recovery times of a long SOA. A remarkably fast gain recovery is observed and the wavelength dependent nature of this recovery is investigated. Chapter 4 discusses the experimental demonstration of an all-optical modulation conversion technique which can convert on-off- keyed data into either duobinary or alternative mark inversion. In Chapter 5 a novel phase sensitive frequency conversion scheme capable of extracting the two orthogonal components of a quadrature phase modulated signal into two separate frequencies is demonstrated. Chapter 6 investigates a novel all-optical clock recovery technique for phase modulated optical orthogonal frequency division multiplexing superchannels and finally Chapter 7 provides a brief conclusion.
Resumo:
Use of phase transfer catalysts such as 18-crown-6 enables ionic, linear conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES) to efficiently disperse single-walled carbon nanotubes (SWNTs) in multiple organic solvents under standard ultrasonication methods. Steady-state electronic absorption spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) reveal that these SWNT suspensions are composed almost exclusively of individualized tubes. High-resolution TEM and AFM data show that the interaction of PNES with SWNTs in both protic and aprotic organic solvents provides a self-assembled superstructure in which a PNES monolayer helically wraps the nanotube surface with periodic and constant morphology (observed helical pitch length = 10 ± 2 nm); time-dependent examination of these suspensions indicates that these structures persist in solution over periods that span at least several months. Pump-probe transient absorption spectroscopy reveals that the excited state lifetimes and exciton binding energies of these well-defined nanotube-semiconducting polymer hybrid structures remain unchanged relative to analogous benchmark data acquired previously for standard sodium dodecylsulfate (SDS)-SWNT suspensions, regardless of solvent. These results demonstrate that the use of phase transfer catalysts with ionic semiconducting polymers that helically wrap SWNTs provide well-defined structures that solubulize SWNTs in a wide range of organic solvents while preserving critical nanotube semiconducting and conducting properties.
Resumo:
Intense, few-femtosecond pulse technology has enabled studies of the fastest vibrational relaxation processes. The hydrogen group vibrations can be imaged and manipulated using intense infrared pulses. Through numerical simulation, we demonstrate an example of ultrafast coherent control that could be effected with current experimental facilities, and observed using high-resolution time-of-flight spectroscopy. The proposal is a pump-probe-type technique to manipulate the D2+ ion with ultrashort pulse sequences. The simulations presented show that vibrational selection can be achieved through pulse delay. We find that the vibrational system can be purified to a two-level system thus realizing a vibrational qubit. A novel scheme for the selective transfer of population between these two levels, based on a Raman process and conditioned upon the delay time of a second control-pulse is outlined, and may enable quantum encoding with this system.
Resumo:
Ultrashort (<15 fs) high intensity (1014-1016 W cm-2) laser pulses have provided novel methods for investigation of the dynamics of simple molecular ions such as H2+ and D2+. In this paper we report on simulations carried out for the D2+ molecular ion, within the Born- Oppenheimer and two-state approximations. These simulations allow one to investigate the dissociation dynamics of the D2+ molecular ion when subjected to such ultrashort, intense laser pulses. In particular, these simulations are compared to the results from recent pump-probe experiments, in which, the nuclear vibrational motion of D2+ has been imaged. Simulations suggest that the nature of the dissociation process, be it 1- or 2-photon, may be influenced by the tuning of the pump-probe delay time.
Resumo:
An attosecond pump-probe scheme that combines the use of a free-electron laser pulse with an ultrashort pulse is applied in order to explore the ultrafast excitation dynamics in Ne. We describe the multielectron dynamics using a new nonperturbative time-dependent R-matrix theory. This theory enables the interaction of ultrashort light fields with multielectron atoms and atomic ions to be determined from first principles. By probing the emission of an inner 2s electron from Ne we are also able to study the bound state population dynamics during the free-electron laser pulse.
Resumo:
We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C(+). The ionization probability of a coherent superposition of the 2s2p(2) (2)D and (2)S states shows rapid modulation due to collective dynamics of the two equivalent 2p electrons, with the modulation frequency linked to the dielectronic repulsion. The best insight into this collective dynamics is achieved by a transformation from LS symmetry to the uncoupled basis. Such dynamics may be important in high-harmonic generation using open-shell atoms and ions.
Resumo:
We describe an experimental system designed for single-shot photoelectron spectroscopy on free atoms and molecules at the Free Electron Laser in Hamburg (FLASH at DESY). The combination of the extreme ultra-violet (EUV) Free Electron Laser and a temporally synchronized optical fs laser (Ti:Sapphire) enables a variety of two-color pump-probe experiments. The spectral, temporal and spatial characteristics of both the EUV FEL and the optical laser pulses, the experimental procedure to control their overlap as well as the performance of an electron spectrometer used to obtain single-shot photoelectron spectra are discussed. As an illustration of the capabilities of this set-up, some results on two-photon two-color ionization of rare gases are presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Recent advances in the study of quantum vibrations and rotations in the fundamental hydrogen molecules are reported. Using the deuterium molecules (D-2(+) and D-2) as exemplars, the application of ultrafast femtosecond pump-probe experiments to study the creation and time-resolved imaging of coherent nuclear wavepackets is discussed. The ability to study the motion of these fundamental molecules in the time-domain is a notable milestone, made possible through the advent of ultrashort intense laser pulses with durations on sub-vibrational (and sub-rotational) timescales. Quantum wavepacket revivals are characterised for both vibrational and rotational degrees of freedom and quantum models are used to provide a detailed discussion of the underlying ultrafast physical dynamics for the specialist and non-specialist alike. (C) 2009 Elsevier B.V. All rights reserved.