975 resultados para Mud Ejections
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Red mud (RM) is a mineral waste, residue of the Bayer process used to obtain alumina from bauxite. While the exploration of rolled pebble damages the environment and is much more controlled by the government, the huge RM disposal areas do not stop increasing and polluting soil, rivers and groundwater sources in Amazon. In this work, the material mixtures used to produce coarse aggregates presented up to 80% of RM, 30% of metakaolin and 30% of active silica as recycled waste. Several tests were carried out to determine the aggregates physical properties and to evaluate the mechanical performance of the concretes with the new aggregates, including hydraulic abrasion strength, and the results were compared to the reference ones, i.e. rolled pebble concretes. Additionally, the sintering process neutralizes any toxic substance as occur in some RM products like tiles and bricks, and these results have encouraged an industrial or semi-industrial production of RM aggregates for concretes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Along the southern Brazilian coast, Tijucas Bay is known for its unique muddy tidal flats associated with chenier plains. Previous field observations pointed to very high suspended sediment concentrations (SSCs) in the inner parts of the bay, and in the estuary of the Tijucas River, suggesting the presence of fluid mud. In this study, the occurrences of suspended sediments and fluid mud were examined during a larger-scale, high-resolution 2-day field campaign on 1-2 May 2007, encompassing survey lines spanning nearly 80 km, 75 water sampling stations for near-bottom density estimates, and ten sediment sampling stations. Wave refraction modeling provided qualitative wave energy estimates as a function of different incidence directions. The results show that SSC increases toward the inner bay near the water surface, but seaward near the bottom. This suggests that suspended sediment is supplied by the local rivers, in particular the Tijucas. Near-surface SSCs were of the order of 50 mg l(-1) close to the shore, but exceeded 100 mg l(-1) near the bottom in the deeper parts of the bay. Fluid mud thickness and location given by densimetry and echo-sounding agreed in some places, although being mostly discordant. The best agreement was observed where wave energy was high during the campaign. The discrepancy between the two methods may be an indication for the existence of fluid mud, which is recorded by one method but not the other. Agreement is considered to be an indication of fluidization, whereas disagreement indicates more consolidation. Wave modeling suggests that waves from the ENE and SE are the most effective in supplying energy to the inner bay, which may induce the liquefaction of mud deposits to form fluid mud. Nearshore mud resuspension and weak horizontal currents result in sediment-laden offshore flow, which explains the higher SSCs measured in the deeper parts of the bay, besides providing a mechanism for fine-sediment export to the inner shelf.
Resumo:
The main constituents of red mud produced in Aluminio city (S.P., Brazil) are iron, aluminum, and silicon oxides. It has been determined that the average particle diameter for this red mud is between 0.05 and 0.002 mm. It is observed that a decrease in the percentage of smaller particles occurs at temperatures greater than 400 degrees C. This observation corresponds with the thermal analysis and X-ray diffraction (XRD) data, which illustrate the phase transition of goethite to hematite. A 10% mass loss is observed in the thermal analysis patterns due to the hydroxide-oxide phase transitions of iron (primary phase transition) and aluminum (to a lesser extent). The disappearance and appearance of the different phases of iron and aluminum confirms the decomposition reactions proposed by the thermal analysis data. This Brazilian red mud has been classified as mesoporous at all temperatures except between 400 and 500 degrees C where the classification changes to micro/mesoporous.
Resumo:
During this work has been developed an innovative methodology for continuous and in situ gas monitoring (24/24 h) of fumarolic and soil diffusive emissions applied to the geothermal and volcanic area of Pisciarelli near Agnano inside the Campi Flegrei caldera (CFc). In literature there are only scattered and in discrete data of the geochemical gas composition of fumarole at Campi Flegrei; it is only since the early ’80 that exist a systematic record of fumaroles with discrete sampling at Solfatara (Bocca Grande and Bocca Nuova fumaroles) and since 1999, even at the degassing areas of Pisciarelli. This type of sampling has resulted in a time series of geochemical analysis with discontinuous periods of time set (in average 2-3 measurements per month) completely inadequate for the purposes of Civil Defence in such high volcanic risk and densely populated areas. For this purpose, and to remedy this lack of data, during this study was introduced a new methodology of continuous and in situ sampling able to continuously detect data related and from its soil diffusive degassing. Due to its high sampling density (about one measurement per minute therefore producing 1440 data daily) and numerous species detected (CO2, Ar, 36Ar, CH4, He, H2S, N2, O2) allowing a good statistic record and the reconstruction of the gas composition evolution of the investigated area. This methodology is based on continuous sampling of fumaroles gases and soil degassing using an extraction line, which after undergoing a series of condensation processes of the water vapour content - better described hereinafter - is analyzed through using a quadrupole mass spectrometer
Resumo:
This study presents an integrated mineralogical-geochemical data base on fine-grained sediments transported by all major rivers of southern Africa, including the Zambezi, Okavango, Limpopo, Olifants, Orange and Kunene. Clay mineralogy, bulk geochemistry, Sr and Nd isotopic signatures of river mud, considered as proxy of suspended load, are used to investigate the influence of source-rock lithology and weathering intensity on the composition of clay and silt produced in subequatorial to subtropical latitudes. Depletion in mobile alkali and alkaline-earth metals, minor in arid Namibia, is strong in the Okavango, Kwando and Upper Zambezi catchments, where recycling is also extensive. Element removal is most significant for Na, and to a lesser extent for Sr. Depletion in K, Ca and other elements, negligible in Namibia, is moderate elsewhere. The most widespread clay minerals are smectite, dominant in muds derived from Karoo or Etendeka flood basalts, or illite and chlorite, dominant in muds derived from metasedimentary rocks of the Damara Orogen or Zimbabwe Craton. Kaolinite represents 30-40% of clay minerals only in Okavango and Upper Zambezi sediments sourced in humid subequatorial Angola and Zambia. After subtracting the effects of recycling and of local accumulation of authigenic carbonates in soils, the regional distribution of clay minerals and chemical indices consistently reflect weathering intensity primarily controlled by climate. Bulk geochemistry identifies most clearly volcaniclastic sediments and mafic sources in general, but cannot discriminate the other sources of detritus in detail. Instead, Sr and Nd isotopic fingerprints are insensitive to weathering, and thus mirror faithfully the tectonic structure of the southern African continent. Isotopic tools thus represent a much firmer basis than bulk geochemistry or clay mineralogy in the provenance study of mudrocks.
Resumo:
Beth Owen is just one of many Yale School of Forestry and Environmental Studies graduate students and alumni to participate in an independent research project through the support of Connecticut Sea Grant. The internships have been as ambitious as they are diverse, and all have given participants a new perspective on the role of research in their future. The program is based at Yale’s Center for Coastal and Watershed Systems. Beth sampled and analyzed sediments for heavy metals from the lower Quinnipiac River.
Resumo:
Hydrocarbon seeps are ubiquitous at gas-prone Cenozoic deltas such as the Nile Deep Sea Fan (NDSF) where seepage into the bottom water has been observed at several mud volcanoes (MVs) including North Alex MV (NAMV). Here we investigated the sources of hydrocarbon gases and sedimentary organic matter together with biomarkers of microbial activity at four locations of NAMV to constrain how venting at the seafloor relates to the generation of hydrocarbon gases in deeper sediments. At the centre, high upward flux of hot (70 °C) hydrocarbon-rich fluids is indicated by an absence of biomarkers of Anaerobic Oxidation of Methane (AOM) and nearly constant methane (CH4) concentration depth-profile. The presence of lipids of incompatible thermal maturities points to mixing between early-mature petroleum and immature organic matter, indicating that shallow mud has been mobilized by the influx of deep-sourced hydrocarbon-rich fluids. Methane is enriched in the heavier isotopes, with values of d13C ~-46.6 per mil VPDB and dD ~-228 per mil VSMOW, and is associated with high amounts of heavier homologues (C2+) suggesting a co-genetic origin with the petroleum. On the contrary at the periphery, a lower but sustained CH4 flux is indicated by deeper sulphate-methane transition zones and the presence of 13C-depleted biomarkers of AOM, consistent with predominantly immature organic matter. Values of d13C-CH4 ~-60 per mil VPDB and decreased concentrations of 13C-enriched C2+ are typical of mixed microbial CH4 and biodegraded thermogenic gas from Plio-Pleistocene reservoirs of the region. The maturity of gas condensate migrated from pre-Miocene sources into Miocene reservoirs of the Western NDSF is higher than that of the gas vented at the centre of NAMV, supporting the hypothesis that it is rather released from the degradation of oil in Neogene reservoirs. Combined with the finding of hot pore water and petroleum at the centre, our results suggest that clay mineral dehydration of Neogene sediments, which takes place posterior to reservoir filling, may contribute to intense gas generation at high sedimentation rate deltas.