965 resultados para Motor drive
Resumo:
In this paper the influence of the form of motor excitation on the performance of a small (< 1 kW) induction motor drive is studied. Two forms of excitation, namely sine waves generated by pulse width modulation and simple square wave are explored. Sine wave excitation gives lower motor losses but increases inverter losses. Conversely, square wave excitation increases motor losses but decreases inverter losses. Losses have been measured directly by calorimetric means or, in the case of the inverter, predicted by a Pspice model that has been verified by calorimetric methods. The work shows that overall, the use of square wave excitation leads to a more efficient drive. © 2004 The Institution of Electrical Engineers.
Resumo:
We have built a four-pole high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) in our lab. At this stage, the HTS PMSM uses two 2G HTS racetrack coils, which are YBCO wires, type 344 from AMSC, and four conventional copper coils as stator windings. 75 YBCO bulks are mounted on the surface of the rotor. After the pulsed field magnetization system had been developed and tested in our lab in 2011, the rotor can trap a four-pole magnetic field. This makes HTS bulks possible for motor application, other than HTS coils. The HTS PMSM can successfully run at a low speed of around 150 rpm for an initial test. This paper states theoretical and practical works on the HTS PMSM's operation including HTS motor drive development and its application. © 2002-2011 IEEE.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance
Resumo:
The present work is based on the applied bilinear predictive control applied to an induction motor. As in particular case of the technique based on predictive control in nonlinem systems, these have desperted great interest, a time that present the advantage of being simpler than the non linear in general and most representative one than the linear one. One of the methods, adopted here, uses the linear model "quasi linear for step of time" based in Generalized Predictive Control. The modeling of the induction motor is made by the Vectorial control with orientation given for the indirect rotor. The system is formed by an induction motor of 3 cv with rotor in squirregate, set in motion for a group of benches of tests developed for this work, presented resulted for a variation of +5% in the value of set-point and for a variation of +10% and -10% in the value of the applied nominal load to the motor. The results prove a good efficiency of the predictive bilinear controllers, then compared with the linear cases
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Topologies of motor drive systems are studied, aiming the reduction of common-mode (CM) currents. Initially, the aspects concerning the CM currents circulation are analysed. The reason of common-mode voltages generation, the circulating paths for the resulting CM currents and their effects are discussed. Then, a non-conventional drive system configuration is proposed in order to reduce the CM currents and their effects. This configuration comprehends a non-conventional inverter module wired to a motor with an unusual connection. The cables arrangement differs from the standard solution, too. The proposed topology is compared with other ones, like the active circuit for common-mode voltages compensation. The contribution of the configuration to the reduction of CM voltages and currents and their related interferences are evaluated, based on numerical simulations. Some results are presented and discussed regarding the suitability of the proposed configuration as a potential solution to reduce the CM currents effects, when the state of art and implementation cost of drives are taken into account.
Resumo:
The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases. The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque. © 2013 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance.
Resumo:
Muscle physiologists often describe fatigue simply as a decline of muscle force and infer this causes an athlete to slow down. In contrast, exercise scientists describe fatigue during sport competition more holistically as an exercise-induced impairment of performance. The aim of this review is to reconcile the different views by evaluating the many performance symptoms/measures and mechanisms of fatigue. We describe how fatigue is assessed with muscle, exercise or competition performance measures. Muscle performance (single muscle test measures) declines due to peripheral fatigue (reduced muscle cell force) and/or central fatigue (reduced motor drive from the CNS). Peak muscle force seldom falls by >30% during sport but is often exacerbated during electrical stimulation and laboratory exercise tasks. Exercise performance (whole-body exercise test measures) reveals impaired physical/technical abilities and subjective fatigue sensations. Exercise intensity is initially sustained by recruitment of new motor units and help from synergistic muscles before it declines. Technique/motor skill execution deviates as exercise proceeds to maintain outcomes before they deteriorate, e.g. reduced accuracy or velocity. The sensation of fatigue incorporates an elevated rating of perceived exertion (RPE) during submaximal tasks, due to a combination of peripheral and higher CNS inputs. Competition performance (sport symptoms) is affected more by decision-making and psychological aspects, since there are opponents and a greater importance on the result. Laboratory based decision making is generally faster or unimpaired. Motivation, self-efficacy and anxiety can change during exercise to modify RPE and, hence, alter physical performance. Symptoms of fatigue during racing, team-game or racquet sports are largely anecdotal, but sometimes assessed with time-motion analysis. Fatigue during brief all-out racing is described biomechanically as a decline of peak velocity, along with altered kinematic components. Longer sport events involve pacing strategies, central and peripheral fatigue contributions and elevated RPE. During match play, the work rate can decline late in a match (or tournament) and/or transiently after intense exercise bursts. Repeated sprint ability, agility and leg strength become slightly impaired. Technique outcomes, such as velocity and accuracy for throwing, passing, hitting and kicking, can deteriorate. Physical and subjective changes are both less severe in real rather than simulated sport activities. Little objective evidence exists to support exercise-induced mental lapses during sport. A model depicting mind-body interactions during sport competition shows that the RPE centre-motor cortex-working muscle sequence drives overall performance levels and, hence, fatigue symptoms. The sporting outputs from this sequence can be modulated by interactions with muscle afferent and circulatory feedback, psychological and decision-making inputs. Importantly, compensatory processes exist at many levels to protect against performance decrements. Small changes of putative fatigue factors can also be protective. We show that individual fatigue factors including diminished carbohydrate availability, elevated serotonin, hypoxia, acidosis, hyperkalaemia, hyperthermia, dehydration and reactive oxygen species, each contribute to several fatigue symptoms. Thus, multiple symptoms of fatigue can occur simultaneously and the underlying mechanisms overlap and interact. Based on this understanding, we reinforce the proposal that fatigue is best described globally as an exercise-induced decline of performance as this is inclusive of all viewpoints.
Resumo:
Multilevel converters, because of the benefits they attract in generating high quality output voltage, are used in several applications. Various modulation and control techniques are introduced by several researchers to control the output voltage of the multilevel converters like space vector modulation and harmonic elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this study a new HE technique based on the HE method is proposed for multilevel converters with unequal DC link voltage. The DC link voltage levels are considered as additional variables for the HE method and the voltage levels are defined based on the HE results. Increasing the number of voltage levels can reduce lower order harmonic content because of the fact that more variables are created. In comparison to previous methods, this new technique has a positive effect on the output voltage quality by reducing its total harmonic distortion, which must take into consideration for some applications such as uninterruptable power supply, motor drive systems and piezoelectric transducer excitation. In order to verify the proposed modulation technique, MATLAB simulations and experimental tests are carried out for a single-phase four-level diode-clamped converter.
Resumo:
A pulsewidth modulation (PWM) technique is proposed for minimizing the rms torque ripple in inverter-fed induction motor drives subject to a given average switching frequency of the inverter. The proposed PWM technique is a combination of optimal continuous modulation and discontinuous modulation. The proposed technique is evaluated both theoretically as well as experimentally and is compared with well-known PWM techniques. It is shown that the proposed method reduces the rms torque ripple by about 30% at the rated speed of the motor drive, compared to conventional space vector PWM.
Resumo:
This paper presents the new trend of FPGA (Field programmable Gate Array) based digital platform for the control of power electronic systems. There is a rising interest in using digital controllers in power electronic applications as they provide many advantages over their analog counterparts. A board comprising of Cyclone device EP1C12Q240C8 of Altera is used for developing this platform. The details of this board are presented. This developed platform can be used for the controller applications such as UPS, Induction Motor drives and front end converters. A real time simulation of a system can also be done. An open-loop induction motor drive has been implemented using this board and experimental results are presented.
Resumo:
This paper proposes a multilevel inverter configuration which produces a hexagonal voltage space vector structure in the lower modulation region and a 12-sided polygonal space vector structure in the overmodulation region. A conventional multilevel inverter produces 6n plusmn 1 (n = odd) harmonics in the phase voltage during overmodulation and in the extreme square-wave mode of operation. However, this inverter produces a 12-sided polygonal space vector location, leading to the elimination of 6n plusmn 1 (n = odd) harmonics in the overmodulation region extending to a final 12-step mode of operation with a smooth transition. The benefits of this arrangement are lower losses and reduced torque pulsation in an induction motor drive fed from this converter at higher modulation indexes. The inverter is fabricated by using three conventional cascaded two-level inverters with asymmetric dc-bus voltages. A comparative simulation study of the harmonic distortion in the phase voltage and associated losses in conventional multilevel inverters and that of the proposed inverter is presented in this paper. Experimental validation on a prototype shows that the proposed converter is suitable for high-power applications because of low harmonic distortion and low losses.
Resumo:
Special switching sequences can be employed in space-vector-based generation of pulsewidth-modulated (PWM) waveforms for voltage-source inverters. These sequences involve switching a phase twice, switching the second phase once, and clamping the third phase in a subcycle. Advanced bus-clamping PWM (ABCPWM) techniques have been proposed recently that employ such switching sequences. This letter studies the spectral properties of the waveforms produced by these PWM techniques. Further, analytical closed-form expressions are derived for the total rms harmonic distortion due to these techniques. It is shown that the ABCPWM techniques lead to lower distortion than conventional space vector PWM and discontinuous PWM at higher modulation indexes. The findings are validated on a 2.2-kW constant $V/f$ induction motor drive and also on a 100-kW motor drive.
Resumo:
High power converters are used in variable speed induction motor drive applications. Riding through a short term power supply glitch is becoming an important requirement in these power converters. The power converter uses a large number of control circuit boards for its operation. The control power supply need to ensure that any glitch in the grid side does not affect any of these control circuit boards. A power supply failure of these control cards results in shut down of the entire system. The paper discusses the ride through system developed to overcome voltage sags and short duration outages at the power supply terminals of the control cards in these converters. A 240VA non-isolated, bi-directional buck-boost converter has been designed to be used along with a stack of ultracapacitors to achieve the same. A micro-controller based digital control platform made use of to achieve the control objective. The design of the ultracapacitor stack and the bidirectional converter is described the performance of the experimental set-up is evaluated.