860 resultados para Motion-based input
Resumo:
BACKGROUND: Various osteotomy techniques have been developed to correct the deformity caused by slipped capital femoral epiphysis (SCFE) and compared by their clinical outcomes. The aim of the presented study was to compare an intertrochanteric uniplanar flexion osteotomy with a multiplanar osteotomy by their ability to improve postoperative range of motion as measured by simulation of computed tomographic data in patients with SCFE. METHODS: We examined 19 patients with moderate or severe SCFE as classified based on slippage angle. A computer program for the simulation of movement and osteotomy developed in our laboratory was used for study execution. According to a 3-dimensional reconstruction of the computed tomographic data, the physiological range was determined by flexion, abduction, and internal rotation. The multiplanar osteotomy was compared with the uniplanar flexion osteotomy. Both intertrochanteric osteotomy techniques were simulated, and the improvements of the movement range were assessed and compared. RESULTS: The mean slipping and thus correction angles measured were 25 degrees (range, 8-46 degrees) inferior and 54 degrees (range, 32-78 degrees) posterior. After the simulation of multiplanar osteotomy, the virtually measured ranges of motion as determined by bone-to-bone contact were 61 degrees for flexion, 57 degrees for abduction, and 66 degrees for internal rotation. The simulation of the uniplanar flexion osteotomy achieved a flexion of 63 degrees, an abduction of 36 degrees, and an internal rotation of 54 degrees. CONCLUSIONS: Apart from abduction, the improvement in the range of motion by a uniplanar flexion osteotomy is comparable with that of the multiplanar osteotomy. However, the improvement in flexion for the simulation of both techniques is not satisfactory with regard to the requirements of normal everyday life, in contrast to abduction and internal rotation. LEVEL OF EVIDENCE: Level III, Retrospective comparative study.
Resumo:
In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.
Resumo:
BACKGROUND AND PURPOSE: In stroke patients, neglect diagnostic is often performed by means of paper-pencil cancellation tasks. These tasks entail static stimuli, and provide no information concerning possible changes in the severity of neglect symptoms when patients are confronted with motion. We therefore aimed to directly contrast the cancellation behaviour of neglect patients under static and dynamic conditions. Since visual field deficits often occur in neglect patients, we analysed whether the integrity of the optic radiation would influence cancellation behaviour. METHODS: Twenty-five patients with left spatial neglect after right-hemispheric stroke were tested with a touchscreen cancellation task, once when the evenly distributed targets were stationary, and once when the identic targets moved with constant speed on a random path. The integrity of the right optic radiation was analysed by means of a hodologic probabilistic approach. RESULTS: Motion influenced the cancellation behaviour of neglect patients, and the direction of this influence (i.e., an increase or decrease of neglect severity) was modulated by the integrity of the right optic radiation. In patients with an intact optic radiation, the severity of neglect significantly decreased in the dynamic condition. Conversely, in patients with damage to the optic radiation, the severity of neglect significantly increased in the dynamic condition. CONCLUSION: Motion may influence neglect in stroke patients. The integrity of the optic radiation may be a predictor of whether motion increases or decreases the severity of neglect symptoms.
Resumo:
PURPOSE To reliably determine the amplitude of the transmit radiofrequency ( B1+) field in moving organs like the liver and heart, where most current techniques are usually not feasible. METHODS B1+ field measurement based on the Bloch-Siegert shift induced by a pair of Fermi pulses in a double-triggered modified Point RESolved Spectroscopy (PRESS) sequence with motion-compensated crusher gradients has been developed. Performance of the sequence was tested in moving phantoms and in muscle, liver, and heart of six healthy volunteers each, using different arrangements of transmit/receive coils. RESULTS B1+ determination in a moving phantom was almost independent of type and amplitude of the motion and agreed well with theory. In vivo, repeated measurements led to very small coefficients of variance (CV) if the amplitude of the Fermi pulse was chosen above an appropriate level (CV in muscle 0.6%, liver 1.6%, heart 2.3% with moderate amplitude of the Fermi pulses and 1.2% with stronger Fermi pulses). CONCLUSION The proposed sequence shows a very robust determination of B1+ in a single voxel even under challenging conditions (transmission with a surface coil or measurements in the heart without breath-hold). Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
EPANET Input Files of New York tunnels and Pacific City used in a metamodel-based optimization study
Resumo:
Metamodels have proven be very useful when it comes to reducing the computational requirements of Evolutionary Algorithm-based optimization by acting as quick-solving surrogates for slow-solving fitness functions. The relationship between metamodel scope and objective function varies between applications, that is, in some cases the metamodel acts as a surrogate for the whole fitness function, whereas in other cases it replaces only a component of the fitness function. This paper presents a formalized qualitative process to evaluate a fitness function to determine the most suitable metamodel scope so as to increase the likelihood of calibrating a high-fidelity metamodel and hence obtain good optimization results in a reasonable amount of time. The process is applied to the risk-based optimization of water distribution systems; a very computationally-intensive problem for real-world systems. The process is validated with a simple case study (modified New York Tunnels) and the power of metamodelling is demonstrated on a real-world case study (Pacific City) with a computational speed-up of several orders of magnitude.
Resumo:
The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.
Resumo:
The paper aims to develop a quasi-dynamic interregional input-output model for evaluating the macro-economic impacts of small city development. The features of the model are summarized as follows: (1) the consumption expenditure of households is regarded as an endogenous variable, (2) the technological change is determined by the change of industrial Location Quotient caused by firm's investment activities. (3) a strong feedback function between the city design and the economic analysis is provided. For checking the performance of the model, Saemangeum's Flux City Design Plan is used as the simulation target in our paper.
Resumo:
“Import content of exports”, based on Leontief’s demand-driven input-output model, has been widely used as an indicator to measure a country’s degree of participation in vertical specialisation trade. At a sectoral level, this indicator represents the share of inter-mediates imported by all sectors embodied in a given sector’s exported output. However, this indicator only reflects one aspect of vertical specialisation – the demand side. This paper discusses the possibility of using the input-output model developed by Ghosh to measure the vertical specialisation from the perspective of the supply side. At a sector level, the Ghosh type indicator measures the share of imported intermediates used in a sector’s production that are subsequently embodied in exports by all sectors. We estimate these two indicators of vertical specialisation for 47 selected economies for 1995, 2000, 2005 using the OECD’s harmonized input-output database. In addition, the potential biases of both indicators due to the treatment of net withdrawals in inventories, are also discussed.
Resumo:
The rapid growth of China's economy has brought about huge losses of natural capital in the form of natural resource depletion and damages from carbon emissions. This paper recalculates value added, capital formation, capital stock, and related multifactor productivity in China's industrial sectors by further developing the genuine savings method of the World Bank. The sector-level natural capital loss was calculated using China's official input–output table and their extensions for tracing final consumers. The capital output elasticity in the productivity estimation was adjusted based on these tables. The results show that although the loss of natural capital in China's industrial sectors in terms of value added has slowed, the impacts on their productivity during the past decades is still quite clear.
Resumo:
Here an inertial sensor-based monitoring system for measuring and analyzing upper limb movements is presented. The final goal is the integration of this motion-tracking device within a portable rehabilitation system for brain injury patients. A set of four inertial sensors mounted on a special garment worn by the patient provides the quaternions representing the patient upper limb’s orientation in space. A kinematic model is built to estimate 3D upper limb motion for accurate therapeutic evaluation. The human upper limb is represented as a kinematic chain of rigid bodies with three joints and six degrees of freedom. Validation of the system has been performed by co-registration of movements with a commercial optoelectronic tracking system. Successful results are shown that exhibit a high correlation among signals provided by both devices and obtained at the Institut Guttmann Neurorehabilitation Hospital.
Resumo:
Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.