969 resultados para Molecular Phylogeny


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other colubrid groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moenkhausia is one of the most speciose genera in Characidae, currently composed of 75 nominal species of small fishes distributed across South American hydrographic basins, primarily the Amazon and Guyanas. Despite the large number of described species, studies involving a substantial number of its species designed to better understand their relationships and putative monophyly are still lacking. In this study, we analysed a large number of species of Moenkhausia to test the monophyly of the genus based on the phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes. The in-group included 29 species of Moenkhausia, and the out-group was composed of representatives of Characidae and other members of Characiformes. All species of Moenkhausia belong to the same clade (Clade C); however, they appear distributed in five monophyletic groups along with other different genera, which means that Moenkhausia is polyphyletic and indicates the necessity of an extensive revision of the group. © 2013 Blackwell Verlag GmbH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characiform family Gasteropelecidae, the so-called freshwater hatchetfishes, is comprised of three genera and nine species found in Panama and all South American countries except Chile. Our goal was to investigate the molecular characteristics, phylogenetic relationships among the species and genera of Gasteropelecidae and phylogenetic relationships between the Gasteropelecidae family with other Characiformes. DNA fragments from two mitochondrial (16S rRNA and Cytochrome B) and three nuclear genes (Rag1, Rag2 and Myh6) were sequenced. Our results corroborate the morphology-based hypothesized monophyly of the Gasteropelecidae family and most of the relationships among its genera. However, the genus Gasteropelecus is polyphyletic because G. maculatus is placed as the sister group to all other gasteropelecids, whereas G. sternicla is more closely related to species of Carnegiella. Similarly, the species Carnegiella strigata is not monophyletic, which suggests that the family needs a taxonomic review. Moreover, the species Thoracocharax stellatus was composed by four distinct lineages suggesting the this species may represents a species complex. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The systematics of the subfamily Callitrichinae (Platyrrhini, Primates), a group of small monkeys from South America and Panama, remains an area of considerable discussion despite many investigations, there being continuing controversy over subgeneric taxonomic classifications based on morphological characters. The purpose of our research was to help elucidate the phylogenetic relationships within the monkey genus Saguinus (Callitrichinae) using a molecular approach to discover whether or not the two different sections containing hairy-faced and bare-faced species are monophyletic, whether Saguinus midas midas and Saguinus bicolor are more closely related than are S. midas midas and Saguinus midas niger, and if Saguinus fuscicollis melanoleucus and Saguinus fuscicollis weddelli really are different species. We sequenced the 957 bp ND1 mitochondrial gene of 21 Saguinus monkeys (belonging to six species and nine morphotypes) and one Cebus monkey (the outgroup) and constructed phylogenetic trees using maximum parsimony, neighbor joining, and maximum likelihood methods. The phylogenetic trees obtained divided the genus Saguinus into two groups, one containing the small-bodied species S. fuscicollis and the other, the large-bodied species S. mystax, S. leucopus, S. oedipus, S. midas, S. bicolor. The most derived taxa, S. midas and S. bicolor, grouped together, while S. fuscicollis melanoleucus and S. f. weddelli showed divergence values that did not support the division of these morphotypes into subspecies. On the other hand, S. midas individuals showed divergence compatible with the existence of three subspecies, two of them with the same morphotype as the subspecies S. midas niger. The results of our study suggest that there is at least one Saguinus subspecies that has not yet been described and that the conservation status of Saguinus species and subspecies should be carefully revised using modern molecular approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic re-evaluation of Vampyressa pusilla warrants the elevation of V. p. thyone from subspecies to species rank based on its distinction from the allopatric V. p. pusilla. Morphological, mensural, chromosomal, and mitochondrial differences define each of these two taxa as divergent lineages. Vampyressa pusilla is endemic to the Atlantic Forest of southeastern South America and V. thyone is found allopatrically in northwestern South America, Central America, and southern Mexico. A molecular phylogenetic analysis of the mtDNA ND3-4 gene region using restriction endonuclease cut sites resulted in a monophyletic, although weakly supported Vampyressa ingroup with Chiroderma, and a clade of Mesophylla and Ectophylla as successive basal outgroup lineages. The phylogeny within Vampyressa, with the exception of V. melissa which is most similar to V. thyone based on karyotypes and morphology, had a topology of ((pusilla + thyone) + ((brocki + nymphaea) + bidens))).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendrophryniscus is an early diverging clade of bufonids represented by few small-bodied species distributed in Amazonia and the Atlantic Forest. We used mitochondrial (414 bp of 12S, 575 bp of 16S genes) and nuclear DNA (785 bp of RAG-1) to investigate phylogenetic relationships and the timing of diversification within the genus. These molecular data were gathered from 23 specimens from 19 populations, including eight out of the 10 nominal species of the genus as well as Rhinella boulengeri. Analyses also included sequences of representatives of 18 other bufonid genera that were publically available. We also examined morphological characters to analyze differences within Dendrophryniscus. We found deep genetic divergence between an Amazonian and an Atlantic Forest clade, dating back to Eocene. Morphological data corroborate this distinction. We thus propose to assign the Amazonian species to a new genus, Amazonella. The species currently named R. boulengeri, which has been previously assigned to the genus Rhamphophryne, is shown to be closely related to Dendrophryniscus species. Our findings illustrate cryptic trends in bufonid morphological evolution, and point to a deep history of persistence and diversification within the Amazonian and Atlantic rainforests. We discuss our results in light of available paleoecological data and the biogeographic patterns observed in other similarly distributed groups. (C) 2011 Elsevier Inc. All rights reserved.