967 resultados para Modeling methods


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort. Recently, we demonstrated the appealing performance of SVRMHC, an SVR-based quantitative modeling method for peptide-MHC interactions, when applied to three mouse class I MHC molecules. Subsequently, we have greatly extended the construction of SVRMHC models and have established such models for more than 40 class I and class II MHC molecules. Here we present the SVRMHC web server for predicting peptide-MHC binding affinities using these models. Benchmarked percentile scores are provided for all predictions. The larger number of SVRMHC models available allowed for an updated evaluation of the performance of the SVRMHC method compared to other well- known linear modeling methods. SVRMHC is an accurate and easy-to-use prediction server for epitope-MHC binding with significant coverage of MHC molecules. We believe it will prove to be a valuable resource for T cell epitope researchers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The binding between peptide epitopes and major histocompatibility complex (MHC) proteins is a major event in the cellular immune response. Accurate prediction of the binding between short peptides and class I or class II MHC molecules is an important task in immunoinformatics. SVRMHC which is a novel method to model peptide-MHC binding affinities based on support rector machine regression (SVR) is described in this chapter. SVRMHC is among a small handful of quantitative modeling methods that make predictions about precise binding affinities between a peptide and an MHC molecule. As a kernel-based learning method, SVRMHC has rendered models with demonstrated appealing performance in the practice of modeling peptide-MHC binding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As torrents of new data now emerge from microbial genomics, bioinformatic prediction of immunogenic epitopes remains challenging but vital. In silico methods often produce paradoxically inconsistent results: good prediction rates on certain test sets but not others. The inherent complexity of immune presentation and recognition processes complicates epitope prediction. Two encouraging developments – data driven artificial intelligence sequence-based methods for epitope prediction and molecular modeling methods based on three-dimensional protein structures – offer hope for the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to the results of the regional climate models our future climate will be warmer and more arid. It has a high importance that the landscape architecture should become acquainted with the expected change to become able to adapt to it. Therefore, it is necessary to draw the future distribution of the plants or to model the shift of the Moesz-line, which characterizes multiple plants simultaneously, to visualize the extent and the direction of the climate change. Our research aimed to model the Moesz-line and display the results on maps, and compare the different modeling methods (Line modeling, Distribution modeling, Isotherm modeling). The model gave impressive results that meet our expectations. Two of the three proved methods showed that the Moesz-line will shift to Central Poland by 2070.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the Morris worm was released in 1988, Internet worms continue to be one of top security threats. For example, the Conficker worm infected 9 to 15 million machines in early 2009 and shut down the service of some critical government and medical networks. Moreover, it constructed a massive peer-to-peer (P2P) botnet. Botnets are zombie networks controlled by attackers setting out coordinated attacks. In recent years, botnets have become the number one threat to the Internet. The objective of this research is to characterize spatial-temporal infection structures of Internet worms, and apply the observations to study P2P-based botnets formed by worm infection. First, we infer temporal characteristics of the Internet worm infection structure, i.e., the host infection time and the worm infection sequence, and thus pinpoint patient zero or initially infected hosts. Specifically, we apply statistical estimation techniques on Darknet observations. We show analytically and empirically that our proposed estimators can significantly improve the inference accuracy. Second, we reveal two key spatial characteristics of the Internet worm infection structure, i.e., the number of children and the generation of the underlying tree topology formed by worm infection. Specifically, we apply probabilistic modeling methods and a sequential growth model. We show analytically and empirically that the number of children has asymptotically a geometric distribution with parameter 0.5, and the generation follows closely a Poisson distribution. Finally, we evaluate bot detection strategies and effects of user defenses in P2P-based botnets formed by worm infection. Specifically, we apply the observations of the number of children and demonstrate analytically and empirically that targeted detection that focuses on the nodes with the largest number of children is an efficient way to expose bots. However, we also point out that future botnets may self-stop scanning to weaken targeted detection, without greatly slowing down the speed of worm infection. We then extend the worm spatial infection structure and show empirically that user defenses, e.g. , patching or cleaning, can significantly mitigate the robustness and the effectiveness of P2P-based botnets. To counterattack, we evaluate a simple measure by future botnets that enhances topology robustness through worm re-infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Service supply chain (SSC) has attracted more and more attention from academia and industry. Although there exists extensive product-based supply chain management models and methods, they are not applicable to the SSC as the differences between service and product. Besides, the existing supply chain management models and methods possess some common deficiencies. Because of the above reasons, this paper develops a novel value-oriented model for the management of SSC using the modeling methods of E3-value and Use Case Maps (UCMs). This model can not only resolve the problems of applicability and effectiveness of the existing supply chain management models and methods, but also answer the questions of ‘why the management model is this?’ and ‘how to quantify the potential profitability of the supply chains?’. Meanwhile, the service business processes of SSC system can be established using its logic procedure. In addition, the model can also determine the value and benefits distribution of the entire service value chain and optimize the operations management performance of the service supply.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We assess the performance of three unconditionally stable finite-difference time-domain (FDTD) methods for the modeling of doubly dispersive metamaterials: 1) locally one-dimensional FDTD; 2) locally one-dimensional FDTD with Strang splitting; and (3) alternating direction implicit FDTD. We use both double-negative media and zero-index media as benchmarks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PhD Thesis in Bioengineering

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents the use of potentiometric measurements for kinetic studies of biosorption of Cd2+ ions from aqueous solutions on Eichhornia crassipes roots. The open circuit potential of the Cd/Cd2+ electrode of the first kind was measured during the bioadsorption process. The amount of Cd2+ ions accumulated was determined in real time. The data were fit to different models, with the pseudo-second-order model proving to be the best in describing the data. The advantages and limitations of the methodology proposed relative to the traditional method are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.