926 resultados para Mixed binary nonlinear programming
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The hydroelectric power plant Hidroltuango represents a major expansion for the Colombian electrical system (with a total capacity of 2400 MW). This paper analyzes the possible interconnections and investments involved in connecting Hidroltuango, in order to strengthen the Colombian national transmission system. A Mixed Binary Linear Programming (MBLP) model was used to solve the Multistage Transmission Network Expansion Planning (MTEP) problem of the Colombian electrical system, taking the N-1 safety criterion into account. The N-1 safety criterion indicates that the transmission system must be expanded so that the system will continue to operate properly if an outage in a system element (within a pre-defined set of contingencies) occurs. The use of a MBLP model guaranteed the convergence with existing classical optimization methods and the optimal solution for the MTEP using commercial solvers. Multiple scenarios for generation and demand were used to consider uncertainties within these parameters. The model was implemented using the algebraic modeling language AMPL and solved using the commercial solver CPLEX. The proposed model was then applied to the Colombian electrical system using the planning horizon of 2018-2025. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.