997 resultados para Mitotic activity
Resumo:
Oncoprotein18/stathmin (Op18) is a microtubule (MT) destabilizing protein that is inactivated during mitosis by phosphorylation at four Ser-residues. Op18 has at least two functions; the N-terminal region is required for catastrophe-promotion (i.e., transition from elongation to shortening), while the C-terminal region is required to inhibit MT-polymerization rate in vitro. We show here that a “pseudophosphorylation” derivative of Op18 (i.e., four Ser- to Glu-substitutions at phosphorylation sites) exhibits a selective loss of catastrophe-promoting activity. This is contrasted to authentic phosphorylation, which efficiently attenuates all activities except tubulin binding. In intact cells, overexpression of pseudophosphorylated Op18, which is not phosphorylated by endogenous kinases, is shown to destabilize interphase MTs but to leave spindle formation untouched. To test if the mitotic spindle is sensitive only to the catastrophe-promoting activity of Op18 and resistant to C-terminally associated activities, N- and C-terminal truncations with defined activity-profiles were employed. The cell-cycle phenotypes of nonphosphorylatable mutants (i.e., four Ser- to Ala-substitutions) of these truncation derivatives demonstrated that catastrophe promotion is required for interference with the mitotic spindle, while the C-terminally associated activities are sufficient to destabilize interphase MTs. These results demonstrate that specific Op18 derivatives with defined activity-profiles can be used as probes to distinguish interphase and mitotic MTs.
Resumo:
Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In the in vitro studies, 3-h pulse (G(1) phase of the cell cycle) and continuous (20 h) treatments were performed. In the in vivo assessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in the in vitro test.
Resumo:
The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA(1,2). Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in E mu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc- overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap- dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site ( IRES)- dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic- specific expression of the endogenous IRES- dependent form of Cdk11 ( also known as Cdc21 and PITSLRE)(3-5), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in E mu-Myc/+ mice. When accurate translational control is re- established in E mu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post- genomic level.
Resumo:
Dissertation presented to obtain a Ph.D degree in Cellular Biology
Resumo:
Several authors have demonstrated an increased number of mitotic figures in breast cancer resection specimen when compared with biopsy material. This has been ascribed to a sampling artifact where biopsies are (i) either too small to allow formal mitotic figure counting or (ii) not necessarily taken form the proliferating tumor periphery. Herein, we propose a different explanation for this phenomenon. Biopsy and resection material of 52 invasive ductal carcinomas was studied. We counted mitotic figures in 10 representative high power fields and quantified MIB-1 immunohistochemistry by visual estimation, counting and image analysis. We found that mitotic figures were elevated by more than three-fold on average in resection specimen over biopsy material from the same tumors (20±6 vs 6±2 mitoses per 10 high power fields, P=0.008), and that this resulted in a relative diminution of post-metaphase figures (anaphase/telophase), which made up 7% of all mitotic figures in biopsies but only 3% in resection specimen (P<0.005). At the same time, the percentages of MIB-1 immunostained tumor cells among total tumor cells were comparable in biopsy and resection material, irrespective of the mode of MIB-1 quantification. Finally, we found no association between the size of the biopsy material and the relative increase of mitotic figures in resection specimen. We propose that the increase in mitotic figures in resection specimen and the significant shift towards metaphase figures is not due to a sampling artifact, but reflects ongoing cell cycle activity in the resected tumor tissue due to fixation delay. The dwindling energy supply will eventually arrest tumor cells in metaphase, where they are readily identified by the diagnostic pathologist. Taken together, we suggest that the rapidly fixed biopsy material better represents true tumor biology and should be privileged as predictive marker of putative response to cytotoxic chemotherapy.
Resumo:
The most promising developments in the field of isolated limb perfusion have centred around the use of the recombinant cytokine tumour necrosis factor-alpha (rTNF-alpha) in combination with melphalan. While the results of clinical trials are impressive, the exact antitumour mechanisms of rTNF-alpha and its role in combination with melphalan remain unclear. Our aim was to study the antitumour activity of human rTNF-alpha with or without the combination of melphalan in a nude mouse human melanoma xenograft system. In a first attempt to define the maximal tolerated single dose of rTNF-alpha in this setting, 15 animals were exposed to increasing doses of rTNF-alpha (60-2500 microg/kg intraperitoneally). All but one animal survived and tumour growth was not influenced by these single dose applications of rTNF-alpha even at the very high doses. Anti-tumour activity of repeated application of melphalan (three times 9 mg/kg in group 2 and three times 6 mg/kg in group 3), of rTNF-alpha alone (nine doses of 50 microg/kg in group 4), and of rTNF-alpha in combination with melphalan (nine doses of 50 microg/kg rTNF-alpha and three times 6 mg/kg melphalan in group 5) was further compared with non-treated animals (group 1). Tumour growth was significantly inhibited in all animals treated with melphalan (group 2, 3 and 5), but was not decreased in animals treated with rTNF-alpha alone (group 4). Mean final tumour volumes and mean tumour weight were not different in group 2 (789 +/- 836 mm3, 0.38 +/- 0.20 g), group 3 (1173 +/- 591 mm3, 0.55 +/- 0.29 g) and group 5 (230 +/- 632 mm3, 0.37 +/- 0.29 g), but significant lower than group 1 (3156 +/- 1512 mm3, 2.35 +/- 0.90 g) and group 4 (3228 +/- 1990 mm3, 2.00 +/- 1.16 g). There were no significant differences between high and low dose melphalan treatment and between melphalan treatment in combination with rTNF-alpha. Histological examination did not show differences between treated and non-treated animals besides slightly inhibited mitotic activities of tumour cells in melphalan-treated animals. While tumour growth of human xenotransplanted melanoma in nude mice could be inhibited by melphalan, we failed to demonstrate any antitumour effect of rTNF-alpha. The combination of melphalan and rTNF-alpha did not enhance the antiproliferative effect of melphalan alone. Human xenotransplanted tumours on nude mice might not be the ideal experimental setting for studies of potential direct antineoplastic activity of rTNF-alpha, and these results support the concept that TNF-alpha exerts its antitumour activity indirectly, possibly by impairing the tumour vasculature and by activating the immune system.
Resumo:
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.
Resumo:
ABSTRACT In S. cerevisiae, the protein phosphatase Cdc14pwt is essential far mitotic exit through its contribution to reducing mitotic CDK activity. But Cdc14pwt also acts as a mare general temporal coordinator of mid and late mitotic events by controlling the partitioning of DNA, microtubule stability and cytokinesis. Cdc14pwt orthologs are well conserved from yeasts to humans, and sequence comparison revealed the presence of three domains, A, B and C, of which A and B form the catalytic domain. Cdc14pwt orthologs are regulated (in part) through cell cycle dependent changes in their localization. Some of them are thought to be kept inactive by sequestration in the nucleolus during interphase. This is the case for flp1pwt, the single identified Cdc14pwt ortholog in the fission yeast S. pombe. In early mitosis, flp1pwt leaves the nucleolus and localizes to the kinetochores, the contractile ring and the mitotic spindle, suggesting that it has multiple substrates and regulates many mitotic processes. flp1D cells show a high chromosome loss rate and septation defects, suggesting a role for flp1wt in the fidelity of chromosome transmission and cytokinesis. The aim of this study is to characterize the mechanisms underlying flp1pwt functions and the control of its activity. A structure-function analysis has revealed that the presence of both A and B domains is required for biological function and for proper flp1pwt mitotic localization. In contrast, the C domain of flp1pwt is responsible for its proper nucleolar localization in G2/interphase. My data suggest that dephosphorylation of substrates by flp1pwt is not necessary for any changes in localization of flp1pwt except that at the medial ring. In that particular case, the catalytic activity of flp1pwt is required for efficient localization, therefore revealing an additional level of regulation. All the functions of flp1pwt assayed to date require its catalytic activity, emphasizing the importance of further identification of its substrates. As described for other orthologs, the capability of selfinteraction and phosphorylation status might help to control flp1pwt activity. My data suggest that flp1pwt forms oligomers in vivo and that phosphorylation is not essential far localization changes of the protein. In addition, the hypophosphorylated form of flp1pwt might be specifically involved in the promotion of cytokinesis. The results of this study suggest that multiple modes of regulation including localization, selfassociation and phosphorylation allow a fine-tuning regulation of flp1pwt phosphatase activity, and more generally that of Cdc14pwt family of phosphatases. RESUME Chez la levure S. cerevisiae, la protéine phosphatase Cdc14pwt est essentielle pour la sortie de mitose du fait de sa contribution dans la réduction d'activité des CDK mitotiques. Comme elle contrôle également le partage de l'ADN, la stabilité des microtubules et la cytokinèse, Cdc14pwt est en fait considérée comme un coordinateur temporel général des évènements de milieu et de fin de mitose. Les orthologues de Cdc14pwt sont bien conservés, des levures jusqu'à l'espèce humaine. Des comparaisons de séquence ont révélé la présence de trois domaines A, B et C, les deux premiers constituant le domaine catalytique. Ils sont régulés (en partie) via des changements dans leur localisation, eux-mêmes dépendants du cycle cellulaire. Plusieurs de ces orthologues sont supposés inactivés par séquestration dans le nucléole en interphase, ce qui est le cas de flp1pwt le seul orthologue de Cdc14pwt identifié chez la levure fissipare S, pombe. En début de mitose, flp1pwt quitte le nucléole et localise au niveau des kinetochores, de l'anneau contractile d'actine et du fuseau mitotique, ce qui laisse supposer de multiples substrats et fonctions. Comme les cellules délétées pour le gène flp1wt présentent un taux élevé de perte de chromosome et des défauts de septation, flp1pwt semble jouer un rôle dans la fidélité de la transmission du matériel génétique et la cytokinèse. Le but de cette étude est de caractériser les mécanismes impliqués dans les fonctions assurées par flp1pwt d'une part, et dans le contrôle de son activité d'autre part. Une analyse structure-fonction a révélé que la présence simultanée des deux domaines A et B est requise pour la fonction biologique de flp1pwt et sa localisation correcte pendant la mitose. Par contre, le domaine C de flp1pwt confère une localisation nucléolaire adéquate en G2/interphase. Mes données suggèrent que la déphosphorylation de substrats par flp1pwt est dispensable pour sa localisation correcte excepté celle à l'anneau médian, qui requiert dans ce cas, l'activité catalytique de flp1pwt, révélant ainsi un niveau de régulation supplémentaire. Toutes les fonctions de flp1 pwt testées jusqu'à présent nécessitent également son activité catalytique, ce qui accentue l'importance de l'identification future de ses substrats. Comme cela a déjà été décrit pour d'autres orthologues, la capacité d'auto-intéraction et le niveau de phosphorylation pourraient contrôler l'activité de flp1pwt. En effet, mes données suggèrent que flp1pwt forme des oligomères in vivo et que la phosphorylation n'est pas essentielle pour les changements de localisation observés pour la protéine. De plus, la forme hypophosphorylée de flp1pwt pourrait être spécifiquement impliquée dans la promotion de la cytokinèse. De multiples modes de régulation incluant la localisation, l'auto-association et la phosphorylation semblent permettre un contrôle fin et subtil de l'activité de la phosphatase flp1pwt, et plus généralement celle des protéines de la famille de Cdc14pwt.
Resumo:
Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment.
Resumo:
In order for some patients to benefit from aggressive chemotherapy for invasive breast carcinoma, many patients are currently being treated without little or no benefit. Enormous effort is hence being directed towards the identification of those patients who will need chemotherapy and those who will not. Since chemotherapy targets proliferating cells pathologists focus on the proliferative activity of tumors, as assessed by mitotic figure counts or by cell cycle specific immunohistochemical markers, such as Ki-67 and H3 histone. As far as the tumor grade is concerned, many of these studies have reported a tendency to up-grade carcinomas in resection specimen when compared to the initial diagnosis on the biopsy material, and most studies have noted that the upgrade in resection specimen is due solely or to a large extent to an increase in the mitotic figure count. In the present study, we propose a different explanation for the divergence in mitotic figure counts between biopsy and resection material. We assessed the proliferative activity of 52 invasive ductal carcinomas and confirm that the number of mitotic figures significantly increased by a factor of more than 3 in resection specimen over the biopsy material, while at the same time the pan-cell cycle specific marker MIB-1 yieldes comparable results. we propose that the delayed formalin fixation of resection specimen allows cell cycle activities to continue for a long time, up to many hours, and that this leads to an arrest of mitoses in metaphase where they are readily identified by the pathologist. We propose that the mitotic figure count in the rapidly fixed biopsy cores better represent the tumor biology and should be used as a basis for chemotherapy therapeutic decisions.
Resumo:
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.
Resumo:
Pancreatic deoxyribonuclease preferentially digests active genes during all phases of the cell cycle including mitosis. Recently, a DNAse I-directed in ~ nick translation technique has been used to demonstrate differences in the DNAse I sensitivity of euchromatic and heterochromatic regions of mitotic chromosomes. This ill ~ technique has been used in this study to ask whether facultative heterochromatin of the inactive X chromosome can be distinguished from the active X chromosome in mouse and human tissues. In addition to this, in ~ nick translation has been used to distinguish constitutive heterochromatin in mouse and human mitotic chromosomes. Based on relative levels of DNAse I sensitivity, the inactive X chromosome could not be distinguished from the active X chromosome in either mouse or human tissues but regions of constitutive heterochromatin could be distinguished by their relative DNAse I insensitivity. The use of !D situ nick translation was also applied to tissue sections of 7.5 day mouse embryos to ask whether differing levels of DNAse I sensitivity could be detected between different tissue types. Differences in DNAse I sensitivities were detected in three tissues examined; embryonic ectoderm, an embryo-derived tissue, and two extraembryonic tissues, extraembryonic ectoderm and ectoplacental cone. Embryonic ectoderm and extraembryonic ectoderm nuclei possessed comparable levels of DNAse I sensitivity while ectoplacental cone was significantly less DNAse I sensitive. This suggests that tissue-specific mechanisms such as chromatin structure may be involved in the regulation of gene activity in certain tissue types. This may also shed some light on possible tissue specific mechanisms regulating X chromosome activity in the developing mouse embryo.
Resumo:
Objective: Our research program has focused on the development of promising, soft alkylating N-phenyl-N’-(2-chloroethyl)urea (CEU) compounds which acylate the glutamic acid-198 of β-tubulin, near the binding site of colchicum alkaloids. CEUs inhibit the motility of cancerous cells in vitro and, interestingly, exhibit antiangiogenic and anticancer activity in vivo. Mitotic arrest induced by microtubule-interfering agents such as CEUs remains the major mechanism of their anticancer activity, leading to apoptosis. However, we recently demonstrated that microtubule disruption by CEUs and other common antimicrotubule agents greatly alters the integrity and organization of microtubule-associated structures, the focal adhesion contact, thereby initiating anoikis, an apoptosis-like cell death mechanism caused by the loss of cell contact with the extracellular matrix. Methods: To ascertain the activated signaling pathway profile of CEUs, flow cytometry, Western blot, immunohistochemistry and transfection experiments were performed. Wound-healing and chick embryo assays were carried out to evaluate the antiangiogenic potency of CEUs. Results: CEU-induced apoptosis involved early cell cycle arrest in G2/M and increased level of CDK1/cycline B proteins. These signaling events were followed by the specific activation of the intrinsic apoptosis pathway, involving loss of mitochondrial membrane potential (Δψm) and ROS production, cytochrome c release from mitochondria, caspase activation, AIF nuclear translocation, PARP cleavage and nuclear fragmentation. CEUs maintained their efficacy on cells plated on pro-survival extracellular matrices or exhibiting overexpression of P-glycoprotein or the anti-apoptotic protein Bcl-2. Conclusion: Our results suggest that CEUs represent a promising new class of antimicrotubule, antiangiogenic and pro-anoikis agents.
Resumo:
A new isocoumarin with antimicrobial activity was isolated from Paepalanthus vellozioides (a native Brazilian plant) and called paepalantine. This study was carried out to assess the mutagenic activity of this new agent in assays with Salmonella typhimurium TA100, TA98, and TA102 and in Chinese hamster ovary (CHO) cell cultures, as well as cytotoxicity to McCoy cells. Paepalantine caused a significant dose-dependent increase in the frequency of revertants in the three strains used in the assay, both with and without S9 mix, in concentrations varying from 2 to 128 mu g/ plate. The mutagenicity was confirmed in assays with CHO cells treated in the G(1), S, and G(2) phases of the cell cycle. There was an increase in the chromosomal aberration frequency, mainly in the G(2) phase. Furthermore, the mitotic index of the treated cultures (40,80, and 160 mu g/ml) was significantly lower, indicating cytotoxicity. The midpoint cytotoxicity values to McCoy cells by the neutral red (NR) and microculture tetrazolium (MTT) techniques resulted in a NR50, and MTT50 of 30 and 38 mu g/ml, respectively. Alterations to the paepalantine structure are suggested to reduce its mutagenic and cytotoxic activity in investigations for its antineoplasic potential (C) 1997 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)