937 resultados para Miniscrew implants
Resumo:
In situ forming (ISF) drug delivery implants have gained tremendous levels of interest over the last few decades. This is due to their wide range of biomedical applications such as in tissue engineering, cell encapsulation, microfluidics, bioengineering and drug delivery. Drug delivery implants forming upon injection has shown a range of advantages which include localized drug delivery, easy and less invasive application, sustained drug action, ability to tailor drug delivery, reduction in side effects associated with systemic delivery and also improved patient compliance and comfort. Different factors such as temperature, pH, ions, and exchange of solvents are involved in in situ implant formation. This review especially focuses on ISF implants that are formed through solvent induced phase inversion (SPI) technique. The article critically reviews and compares a wide range of polymers, solvents, and co-solvents that have been used in SPI implant preparation for control release of a range of drug molecules. Major drawback of SPI systems has been their high burst release. In this regard, the article exhaustively discusses factors that affect the burst release and different modification strategies that has been utilised to reduce the burst effect from these implants. Performance and controversial issues associated with the use of different biocompatible solvents in SPI systems is also discussed. Biodegradation, formulation stability, methods of characterisation and sterilisation techniques of SPI systems is comprehensively reviewed. Furthermore, the review also examines current SPI-based marketed products, their therapeutic application and associated clinical data. It also exemplifies the interest of multi-billion dollar pharma companies worldwide for further developments of SPI systems to a range of therapeutic applications. The authors believe that this will be the first review article that extensively investigate and discusses studies done to date on SPI systems. In so doing, this article will undoubtedly serve as an enlightening tool for the scientists working in the concerned area.
Resumo:
A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).
Resumo:
The Pharmaceutical Journal, 6 September 2014, Vol 293, No 7826, online | URI:
Resumo:
Bioresorbable polymers such as PLA have an important role to play in the development of temporary implantable medical devices with significant benefits over traditional therapies. However, development of new devices is hindered by high manufacturing costs associated with difficulties in processing the material. A major problem is the lack of insight on material degradation during processing. In this work, a method of quantifying degradation of PLA using IR spectroscopy coupled with computational chemistry and chemometric modeling is examined. It is shown that the method can predict the quantity of degradation products in solid-state samples with reasonably good accuracy, indicating the potential to adapt the method to developing an on-line sensor for monitoring PLA degradation in real-time during processing.
Resumo:
Hip replacement surgery is amongst the most common orthopaedic operations performed in the UK. Aseptic loosening is responsible for 40% of hip revision procedures. Aseptic loosening is a result of cement mantle fatigue. The aim of the current study is to analyse the effect of nanoscale Graphene Oxide (GO) on the mechanical properties of orthopaedic bone cement. Study Design A experimental thermal and mechanical analysis was conducted in a laboratory set up conforming to international standards for bone cement testing according to ISO 5583. Testing was performed on control cement samples of Colacryl bone cement, and additional samples reinforced with variable wt% of Graphene Oxide containing composites – 0.1%, 0.25%, 0.5% and 1.0% GO loading. Pilot Data Porosity demonstrated a linear relationship with increasing wt% loading compared to control (p<0.001). Thermal characterisation demonstrated maximal temperature during polymerization, and generated exotherm were inversely proportional to w%t loading (p<0.05) Fatigue strength performed on the control and 0.1 and 0.25%wt loadings of GO demonstrate increased average cycles to failure compared to control specimens. A right shift of the Weibull curve was demonstrated for both wt% available currently. Logistic regression analysis for failure demonstrated significant increases in number of cycles to failure for both specimens compared to a control (p<0.001). Forward Plan Early results convey positive benefits at low wt% loadings of GO containing bone cement. Study completion and further analysis is required in order to elude to the optimum w%t of GO which conveys the greatest mechanical advantage.
Resumo:
Purpose The aim of this study is to improve the drug release properties of antimicrobial agents from hydrophobic biomaterials using using an ion pairing strategy. In so doing antimicrobial agents may be eluted and maintained over a sufficient time period thereby preventing bacterial colonisation and subsequent biofilm formation on medical devices. Methods The model antimicrobial agent was chlorhexidine and the selected fatty acid counter ions were capric acid, myristic acid and stearic acid. The polymethyl methacrylate films were loaded with 2% of fatty acid:antimicrobial agent at the following molar ratios; 0.5:1M, 1:1M and 2:1M and thermally polymerized using azobisisobutyronitrile initiator. Drug release experiments were subsequently performed over a 3-month period and the mass of drug released under sink conditions (pH 7.0, 37oC) quantified using a validated HPLC-UV method. Results In all platforms, a burst of chlorhexidine release was observed over the initial 24-hour period. Similar release kinetics were observed between the formulations during the initial 28 days. However, as time progressed, the chlorhexidine baseline plateaued after 56 days whereas formulations containing the counterions appeared to continuously elute linearly with time. As can be observed in figure 1, the rank order of total chlorhexidine release in the presence of 0.5M fatty acid was myristic acid (40%) > capric acid (35%) > stearic acid (30%)> chlorhexidine baseline (15%). Conclusion The incorporation of fatty acids within the formulation significantly improved chlorhexidine solubility within both the monomer and the polymer and enhanced the drug release kinetics over the period of study. This is attributed to the greater diffusivity of chlorhexidine through PMMA in the presence of fatty acids. In th absence of fatty acids, chlorhexidine release was facilitated by dissolution of surface associated drug particles. This study has illustrated the ability of fatty acids to modulate chlorhexidine release from a model biomaterial through enhanced diffusivity. This strategy may prove advantageous for improved medical devices with enhanced resistance to infection.
Resumo:
Tese de doutoramento, Medicina Dentária (Periodontologia), Universidade de Lisboa, Faculdade de Medicina Dentária, 2016
Resumo:
BACKGROUND: Capsular fibrosis is a severe complication after breast implantation with an uncertain etiology. Microbial colonization of the prosthesis is hypothesized as a possible reason for the low-grade infection and subsequent capsular fibrosis. Current diagnostic tests consist of intraoperative swabs and tissue biopsies. Sonication of removed implants may improve the diagnosis of implant infection by detachment of biofilms from the implant surface. METHODS: Breast implants removed from patients with Baker grades 3 and 4 capsular contracture were analyzed by sonication, and the resulting sonication fluid was quantitatively cultured. RESULTS: This study investigated 22 breast implants (6 implants with Baker 3 and 16 implants with Baker 4 capsular fibrosis) from 13 patients. The mean age of the patients was 49 years (range, 31-76 years). The mean implant indwelling time was 10.4 years (range, 3 months to 30 years). Of the 22 implants, 12 were used for breast reconstruction and 10 for aesthetic procedures. The implants were located subglandularly (n = 12), submuscularly (n = 6), and subcutaneously (n = 4). Coagulase-negative staphylococci, Propionibacterium acnes, or both were detected in the sonication fluid cultures of nine implants (41%), eight of which grew significant numbers of microorganisms (>100 colonies/ml of sonication fluid). CONCLUSIONS: Sonication detected bacteria in 41% of removed breast implants. The identified bacteria belonged to normal skin flora. Further investigation is needed to determine any causal relation between biofilms and capsular fibrosis.
Resumo:
Infections associated with implants are increasingly important in modem medicine. Biofilms are the cause that these infections are more difficult to diagnose and to cure. Particularly low-grade infections are difficult to distinguish from aseptic failure, because they often present with early loosening and persisting pain. For an accurate diagnosis, clinical signs and symptoms, laboratory markers of infection, microbiology, histology and imaging examinations are needed. The treatment goal is eradication of infection and an optimal functional result. Successful treatment requires adequate surgical procedure combined with long-term antimicrobial therapy, ideally with an agent acting on biofilms.
Resumo:
Problématique : Les connaissances théoriques et pratiques au sujet de la mise en charge immédiate d’implants non jumelés chez les édentés sont limitées. Objectifs : Cette étude avait pour but de : (1) déterminer le taux de survie implantaire de 2 implants non jumelés supportant une prothèse totale mandibulaire suite à une mise en charge immédiate, (2) évaluer les changements des niveaux osseux et de stabilité implantaire survenus sur ces 2 implants durant une période de 4 mois et les comparer à un implant témoin, et (3) décrire les complications cliniques associées à ce mode de mise en charge. Méthodologie : Chez 18 individus édentés (âge moyen de 62±7 ans), cette étude de phase I avec un design pré/post a évalué les résultats cliniques suivant la mise en charge immédiate (<48 heures) de 2 implants non jumelés par une prothèse totale mandibulaire. À l’aide de radiographies périapicales, de sondages osseux et d’analyses de la fréquence en résonnance, les niveaux osseux péri-implantaires (en mm) et les niveaux de stabilité implantairte (en ISQ) de ces 2 implants insérés dans la région parasymphysaire ont été évalués à la chirurgie (T0) et au suivi de 4 mois (T1). Un implant non submergé et sans mise en charge inséré dans la région de la symphyse mandibulaire a été utilisé comme témoin. Les données ont été analysées avec des modèles mixtes linéaires, la méthode de Tukey ajustée, l’analyse de variance de Friedman et des tests de rang signés de Wilcoxon. Résultats : De T0 à T1, 3 implants mis en charge immédiatement ont échoué chez 2 patients. Le taux de survie implantaire obtenu était donc de 91,7% (33/36) et, par patient, de 88,9% (16/18). Aucun implant témoin n’a échoué. Les changements osseux documentés radiologiquement et par sondage autour des implants mis en charge immédiatement étaient, respectivement, de -0,2 ± 0,3 mm et de -0,5 ± 0,6 mm. Les pertes d’os de support implantaire n’ont pas été démontrées statistiquement différentes entre les implants avec mise en charge immédiate et les témoins. Les niveaux moyens de stabilité implantaire ont augmenté de 5 ISQ indépendamment de la mise en charge. Les niveaux moyens d’ISQ n’ont pas été démontrés statistiquement différents entre les implants avec mise en charge immédiate et les témoins à T0 ou T1. Cinq des 18 patients n’ont expérimenté aucune complication clinique, alors que 9 en ont eu au moins deux. Hormis les échecs implantaires, aucune de ces complications n’a entraîné de changements au protocole. Conclusion : Les résultats à court terme suggèrent que : (1) le taux de survie implantaire suite au protocole immédiat est similaire à ceux rapportés lors d’un protocole de mise en charge conventionnel (2) les changements d’os de support implantaire et de stabilité ne sont pas différents comparativement à ceux d’un implant témoin, (3) un niveau élevé d’expérience clinique et chirurgicale est requis pour effectuer les procédures et pour gérer les complications associées. Ces résultats préliminaires devraient être confirmés dans une étude clinique de phase II.