905 resultados para Mineral Trioxide Aggregate
Resumo:
Objective: Hydroxyl (OH(-)) and calcium (Ca(++)) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) Epiphany, G4) Epiphany + 10% calcium hydroxide (CH), G5) Epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods: Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results: G1, G2, G4, and G5 had the highest pH until 14 days (p < 0.05). G1 presented the highest Ca(++) release until 6 h, and G4 and G5, from 12 h through 14 days. Ca(++) release was greater for G1 and G2 at 28 days. G6 released the least Ca(++). Conclusions: MTA, Sealer 26, Epiphany, and Epiphany + CH release OH-and Ca(++) ions. Epiphany + CH may be an alternative as retrofilling material.
Resumo:
Objective. The objective of this study was to evaluate the radiopacity of white Portland cement (PC) associated with bismuth oxide (Bi(2)O(3)), barium sulfate (BaSO(4)), iodoform (CHI(3)), and zirconium oxide (ZrO(2)). White mineral trioxide aggregate (WMTA) and PC without radiopacifier were used as positive and negative controls, respectively.Study design. Following International Organization for Standardization (ISO) 6876/2001, 5 circular specimens (10 x 1 mm) were made from each material. After the materials set, radiographs were taken using occlusal film and a graduated aluminum step-wedge varying in thickness from 2 to 16 mm. The dental X-ray unit (GE1000) was set at 50 Kvp, 10 mA, 18 pulses/s, and distance of 33.5 cm. The radiographs were digitized, and radiopacity was compared with the aluminum step-wedge, using Wixwin-2000 software (Gendex). Data (mm Al) were analyzed using analysis of variance and Tukey tests.Results. The PC + Bi(2)O(3) and WMTA samples presented greater radiopacity (5.88 and 5.72 mm Al, respectively), followed by PC + ZrO(2) (3.87 mm Al) and PC + CHI(3) (3.50 mm Al). The PC + BaSO(4) and PC samples presented the lowest radiopacity values (2.35 and 1.69 mm Al, respectively), which were below the minimum value recommended by the ISO.Conclusion. Analysis of the present results led to the conclusion that all of the materials tested presented acceptable radiopacity, except PC + BaSO(4) and pure PC. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 628-632)
Resumo:
Objective. The aim of this study was to evaluate the pH, calcium release, setting time, and solubility of two commercially available mineral trioxide aggregate (MTA) cements (white MTA Angelus and MTA Bio), and of three experimental cements (light-cured MTA, Portland cement with 20% bismuth oxide and 5% calcium sulfate, and an epoxy resin-based cement).Study design. For evaluation of pH and calcium ion release, polyethylene tubes with 1.0 mm internal diameter and 10.0 mm length were filled with the cements and immediately immersed in flasks containing 10 mL deionized water. After 3, 24, 72, and 168 hours, the tubes were removed and the water from the previous container was measured for its pH and calcium content with a pH meter and an atomic absorption spectrophotometer. For analysis of the setting time, Gilmore needles weighing 100 g and 456.5 g were used, in accordance with the American Society for Testing and Materials specification no. C266-03. Solubility of each cement was also tested.Results. All the cements were alkaline and released calcium ions, with a declining trend over time. After 3 hours, Portland cement + bismuth oxide and MTA Bio had the highest pH and light-cured MTA the lowest. After 1 week, MTA Bio had the highest pH and light-cured MTA and epoxy resin-based cement the lowest. Regarding calcium ion release, after 3 hours, Portland cement + bismuth oxide showed the highest release. After 1 week, MTA Bio had the highest. Epoxy resin-based cement and light-cured MTA had the lowest calcium release in all evaluation periods. Regarding setting times, white MTA Angelus and MTA Bio had the shortest, Portland cement + bismuth oxide had an intermediate setting time, and the epoxy resin-based cement had the longest. The materials that showed the lowest solubility values were the epoxy resin-based cement, Portland cement + bismuth oxide, and light-cured MTA. The highest solubility values were presented in white MTA Angelus and MTA Bio.Conclusions. The white MTA Angelus and MTA Bio had the shortest setting times, higher pH and calcium ion release, and the highest solubility. In contrast, the epoxy resin-based cement and light-cured MTA showed lower values of solubility, pH, and calcium ion release. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 250-256)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The purpose of this study was to evaluate the sealing ability of castor oil polymer (COP), mineral trioxide aggregate (MTA) and glass ionomer cement (GIC) as root-end filling materials. Forty-five single-rooted human teeth were cleaned and prepared using a step-back technique. The apical third of each root was resected perpendicularly to the long axis direction. All teeth were obturated with gutta-percha and an endodontic sealer. After, a root-end cavity with 1.25-mm depth was prepared using a diamond bur. The specimens were randomly divided into three experimental groups (n = 15), according to the root-end filling material used: G1) COP; G2) MTA; G3) GIC. The external surfaces of the specimens were covered with epoxy adhesive, except the root-end filling. The teeth were immersed in rhodamine B dye for 24 hours. Then, the roots were sectioned longitudinally and the linear dye penetration at the dentin/material interface was determined using a stereomicroscope. ANOVA and Tukey's tests were used to compare the three groups. The G1 group (COP) presented smaller dye penetration, statistically different than the G2 (MTA) and G3 (GIC) groups (p < 0.05). No statistically significant difference in microleakage was observed between G2 and G3 groups (p > 0.05). The results of this study indicate that the COP presented efficient sealing ability when used as a root-end filling material showing results significantly better than MTA and GIC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to evaluate and compare the quantitative and qualitative inflammatory responses and bone formation potential after implantation of polyethylene tubes filled with a new calcium hydroxide containing sealer (MBPc) and Prolloot mineral trioxide aggregate (MIA). There were 48 Wistar rats divided in three groups: Group I (control group) empty polyethylene tubes were implanted in the extraction site; group II and III, polyethylene tubes were implanted filled with ProRoot mineral trioxide aggregate (MIA) and MBPc, respectively. At 7, 15, and 30 days after tube implantation, the animals were killed, the hemi-maxillas were removed and prepared to light microscopic analyses. The scores obtained were submitted to Kruskal-Wallis statistical test (p < 0.05). Significant differences between the materials were not observed. The results showed that both materials had similar biological response.
Resumo:
Objective. The objective of this study was to evaluate periapical repair following retrograde filling using different root-end filling materials.Study design. After induction of periapical lesions, 48 root canals from do teeth were partially filled. Endodontic surgery was performed and 3 different materials were used for root-end filling: Sealer 26, Sealapex plus zinc oxide, or mineral trioxide aggregate (NITA). No additional procedures were performed in the control group after partial filling of the root canal. After 180 days, the animals were killed, the rnaxillas and mandibles were removed, and specimens were submitted for histologic processing.Results. Histopathologic analysis revealed similar periapical repair for the groups in which Sealer 26, Sealapex plus zinc oxide, and MTA were used (P >.05). The control group showed unsatisfactory periapical repair W <.05).Conclusion. There was no difference in periapical tissue healing alter retrograde filling with the tested materials, which indicates that these 3 root-end filling materials are equally useful.
Resumo:
Aim To evaluate, using an experimental immature tooth model, the fracture resistance of bovine incisors submitted to different reinforcement treatments with mineral trioxide aggregate (MTA).Methodology An immature tooth model was created by sectioning the coronal and apical portions of 40 bovine incisors 8 mm above and 12 mm below the cementoenamel junction. The root canals were irrigated with 1.0% sodium hypochlorite. They were enlarged both coronally and apically using number 703 carbide burs (ISO: 500-104-168-007-021) and their internal diameter was standardized to 2.1 mm. The specimens were assigned to four groups (n = 10): GI-control (without filling); GII-apical MTA plug + filling with gutta-percha and endodontic sealer; GIII-filling with MTA; GIV-apical MTA plug + filling with MTA + metallic post (Reforpost I). A polyether impression material was used to simulate the periodontal ligament. The specimens were submitted to a compressive load at a crosshead speed of 0.5 mm min(-1) in a servo-hydraulic universal testing machine (MTS 810) applied at 45 degrees to the long axis of the tooth until failure. Data were submitted to statistical analysis by the Kruskal-Wallis test at 5% significance level.Results GIV presented the highest fracture resistance (32.7N) and differed significantly from the other groups (P < 0.05). No statistically difference was found between GII (16.6N) and GIII (23.4N) (P > 0.05). GIII had a significantly higher fracture resistance than GI (P < 0.05).Conclusions the use of MTA + metallic post as an intra-radicular reinforcement treatment increased the resistance to fracture of weakened bovine teeth in an experimental immature tooth model.
Resumo:
Aim To assess the histological response associated with grey mineral trioxide aggregate (GMTA) and zinc oxide eugenol (ZOE) as root-end filling materials in teeth where the root canals were not filled and the coronal access cavities were not restored.Methodology Periapical lesions were developed in 24 premolar teeth in three dogs. The root canals were prepared and half of them were dried, filled and the coronal access restored (closed). The remaining teeth were not root filled and no coronal restoration was placed (open). Apical root-end resections were performed 3 mm from the apex, and root-end cavities were prepared with ultrasonic tips. These were randomly filled with either ZOE or GMTA in the same number of specimens using MAPSYSTEM device. After 180 days the animals were killed and blocks of tissues removed and processed for histological examination. Periradicular tissue reaction was evaluated, including severity of inflammation and cementum formation. Statistical analysis was performed using ANOVA analysis and Tukey's test.Results A significant difference was found between the levels of inflammation in the periradicular tissues of the GMTA/closed group, compared with the ZOE/open and ZOE/closed groups (P < 0.05) but not between GMTA/closed and GMTA/open groups. Cementum formation was not found over any ZOE specimens but over MTA in all specimens. No microorganisms were found in the interface between the material and the dentinal walls.Conclusions GMTA was associated with less periapical inflammation and tissue response when used as a root-end filling material, even when no root filling or coronal restoration was present.
Resumo:
The purpose of this study was to compare the effectiveness of antibacterial agents and mineral trioxide aggregate in the healing of bacterial contaminated primate pulps. Study Design: The experiment required four adult male primates (Cebus opella) with 48 teeth prepared with buccal penetrartions into the pulpal tissues. The preparations (Cebus opella) with 48 teeth prepared with buccal penetrations into the exposed to cotton pellets soaked in a bacterial mixture consisting of microorganisms normally found in human pulpal abscesses obtained from the Endodontic Clinic of UNESP. Following bacterial inoculation (30 minute exposure), the pulpal tissue was immediately treated with either sterile saline, Cipro HC Otic solution (12), diluted Buckley formecresol solution (12) or Otosporin otic solution (12) for 5 minutes. After removal of the pellet, hemostasis was obtained and a ZOE base applied to the DFC treated pulps and the non-treated controls (12). After hemostasis, the other exposed pulps were covered with mineral trioxide aggregate (ProRoot). The pulpal bases were all covered with a RMGI (Fuji II LC). The tissue samples were collected at one day, two days, one week and over four weeks (34 days). Results: Following perfusion fixation, the samples were demineralized, sectioned, stained and histologically graded. After histologic analysis, presence of neutrophilic infiltrate and areas of hemorrhage with hyperemia were observed . The depth of the neutrophilic infiltrate depended on the agent or material used. The pupal tissue treated with Otic suspensions demonstrated significantly less inflammation (Kruskal Wallis non parametric analysis, H=9.595 with 1 degree of freedom; P=0.0223) than the formocresol and control groups. The hard tissue bridges formed over the exposure sites were more organized in the MTA treatment groups than in the control and ZOE groups (Kruskal Wallis non parametric analysis, H=18.291 with 1 degree of freedom; P=0.0004). Conclusions: Otic suspensions and MTA are effective in treating bacterial infected pulps and stimulate the production of a hard tissue bridge over the site of the exposure.
Resumo:
Objective: The aim of this study was to compare the microbial leakage of mineral trioxide aggregate (MTA), Portland cement (PC), Sealapex and zinc oxide-eugenol (ZOE) as root-end filling materials.Study design: An in vitro microbial leakage test (MLT) with a split chamber was used in this study. A mixture of facultative bacteria and one yeast (S. aureus + E. faecalis + P. aeruginosa + B. subtilis + C. albicans) was placed in the upper chamber and it could only reach the lower chamber containing Brain Heart Infusion broth by way of leakage through the root-end filling. Microbial leakage was observed daily for 60 days. Sixty maxillary anterior human teeth were randomly assigned to different groups - MTA and PC (gray and white), Sealapex + zinc oxide and ZOE, control groups and subgroups to evaluate the influence of EDTA for smear layer removal. These materials were further evaluated by an agar diffusion test (ADT) to verify their antimicrobial efficacy. Data were analyzed statistically by Kruskal-Wallis and Mann-Whitney test.Results: In the MLT, Sealapex + zinc oxide and ZOE did not show evidence of microbial leakage over the 60-day experimental period. The other materials showed leakage from the 15th day. The presence of smear layer influenced microbial leakage. Microbial inhibition zones were not observed in all samples tested by ADT.Conclusion: Sealapex + zinc oxide and ZOE did not show microbial leakage over the experimental period, whereas it was verified within 15 to 45 days in MTA and Portland cement.
Resumo:
This study was conducted to observe the rat subcutaneous connective tissue reaction to implanted dentin tubes that were filled with mineral trioxide aggregate, Sealapex, Calciobiotic Root Canal Sealer (CRCS), Sealer 26, and the experimental material, Sealer Plus. The animals were sacrificed after 7 and 30 days, and the specimens were prepared for histological analysis after serial sections with a hard-tissue microtome. The undecalcified sections were examined with polarized light after staining according to the Von Kossa technique for calcium. At the tube openings, there were Von Kossa-positive granules that were birefringent to polarized light. Next to these granulations, there was irregular tissue, like a bridge, that was Von Kossa-positive. The dentin walls of the tubes exhibited a structure highly birefringent to polarized light, usually like a layer, in the tubules. These results were observed with all the studied materials, except the CRCS, which didn't exhibit any kind of mineralized structure. The results suggest that among the materials studied, the CRCS could have the least possibility of encouraging hard tissue deposition.
Resumo:
This in vivo study compared the effect of mineral trioxide aggregate (MTA), IRM, Super EBA and ZOE in a puttylike consistency, used as retrofilling materials, in the healing process of periapical tissue of pulpless dogs' teeth submitted to a conventional retrofilling technique. Twenty-four premolars obtained from three dogs were used. At the first intervention, the animals were anesthetized, coronal access was obtained and pulpectomy was done. Root canals were kept open to the oral environment for 180 days to induce the formation of apical lesions. After surgical removal of the lesions with curettes, 2 mm of the apical root was cut out perpendicular to the long axis of the teeth, and root-end cavities were shaped with a low-speed round bur. The bone cavities were irrigated and dried, and the root-end cavities were filled with MTA, IRM, Super EBA and ZOE in a puttylike consistency. The bone cavities were passively filled with blood and flaps were sutured. The coronal access openings were cleaned and double-sealed with ZOE and amalgam. After 180 days, the animals were killed by anesthetic overdose, maxilla and mandible were removed and the pieces were processed for histomorphologic analysis. Data were evaluated blindly on the basis of several histopathologic events and the scores obtained were analyzed statistically using the Kruskal Wallis test. No significant differences were observed among MTA, Super EBA and IRM (p>0.05). However, ZOE had a significantly more negative influence on the apical healing (p<0.05). In conclusion, MTA, Super EBA and IRM had similar histopathologic effects among each other and better performance than ZOE used in a puttylike consistency. Furthermore, only MTA stimulated hard tissue deposition in direct contact with the retrofilling material, even when it was inserted under critical conditions.