997 resultados para Milk processing
Resumo:
Native enzymes play a significant role in proteolysis of milk during storage. This is significant for heat resistant native enzymes. Plasmin is one of the most heat resistant enzymes found in milk. It has been reported to survive several heat treatments, causing spoilage during storage. The aim of this study was to assess susceptibility of high temperature heated milk to proteolysis by native enzymes. The trinitrobenzene sulphonic acid (TNBS) method was used for this purpose. Raw milk was heated at 110, 120, 130,142°C for 2 s and 85°C for 15 s and milk processed at low temperature (85°C /15s) was selected to mimic pasteurisation. TNBS method confirmed that raw milk and milk processed at 85°C /15s were the most proteolysed, whereas treatment of milk at high temperatures (110, 120, 130 and 142°C for 2 s) inactivated the native enzymes. It may thus be concluded that high temperature processing positively affects proteolysis by lowering its susceptibility to spoilage during storage.
Resumo:
Heat stability was evaluated in bulk raw milk, collected throughout the year and subjected to ultra-high temperature (UHT) or in-container sterilisation, with and without added calcium chloride (2 mM), disodium hydrogen phosphate (DSHP, 10 mM) and trisodium citrate (TSC, 10 mM). More sediment was observed following in-container sterilisation (0.24%) compared with UHT (0.19%). Adding CaCl2 made the milk more unstable to UHT than to in-container sterilisation, while adding DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability. DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability.
Resumo:
Public health policies recommend a population wide decrease in the consumption of saturated fatty acids (SFA) to lower the incidence of cardiovascular and metabolic diseases. In most developed countries, milk and dairy products are the major source of SFA in the human diet. Altering milk fat composition offers the opportunity to lower the consumption of SFA without requiring a change in eating habits. Supplementing the diet of lactating cows with oilseeds, plant oils and marine lipids can be used to replace the SFA in milk fat with monounsaturated fatty acids (MUFA), and to a lesser extent, polyunsaturated fatty acids (PUFA). Due to ruminal metabolism, the decreases in milk SFA are also accompanied by increases in trans fatty acids (TFA), including conjugated isomers. The potential to lower SFA, enrich cis MUFA and PUFA, and alter the abundance and distribution of individual TFA in milk differs according to oil source, form of lipid supplement and degree of oilseed processing, and the influence of other components in the diet. The present review summarises recent evidence on changes in milk fat composition that can be achieved using dietary lipid supplements and highlights the challenges to commercial production of modified milk and dairy products. A meta-analysis on the effects of oilseeds on milk fatty acid composition is also presented.
Resumo:
This study evaluated three fermented milk beverages to which had been added sugar strawberry puree post-fermentation. The base was composed of 70% of milk, with whey and buttermilk in the concentrations of 30% and 0%, 15% and 15%, and 0% and 30%, respectively. The starter culture developed well with all formulations reaching pH 4.74.9 in 180 min of fermentation. Lactic acid bacteria in the products were above 8 log cfu/mL throughout the study. The beverages presented similar pH, acidity and viscosity. Buttermilk and whey can be interesting ingredients to be added into fermented milk beverages, because the consumers liked all the products equally, which had an average acceptance score exceeding liked moderately.
Resumo:
Purpose: Euro-Collins solution was developed for the preservation of organs for transplantation, whose characteristics have raised interest for its use as a storage medium for avulsed teeth before replantation. This study evaluated histologically and morphometrically the healing process of dog teeth replanted after storage in Euro-Collins solution or bovine milk.Materials and Methods: Eighty roots of 4 young adult mongrel clogs were randomly assigned to 4 groups (n = 20) and the root canals were instrumented and obturated with gutta-percha and a calcium hydroxide-based sealer. After 2 weeks, the teeth were extracted and subjected to the following protocols: GI (negative control), replantation immediately after extraction; GII (positive control), bench-drying for 2 hours before replantation; GIII and GIV, immersion in 10 mL of whole bovine milk and Euro-Collins solution at 4 C, respectively, for 8 hours before replantation. The animals were sacrificed 90 days postoperatively. The pieces containing the replanted teeth were subjected to routine processing for histologic and histometric analyses under light microscopy and polarized light microscopy.Results: Root resorption was observed in all groups. GII exhibited the greatest loss of dental structure (P < .01), and inflammatory resorption was predominant in this group. Storage in milk showed poorer results than immediate replantation and storage in Euro-Collins solution (P < .01). The teeth stored in Euro-Collins solution presented similar extension of root resorption and periodontal ligament reorganization to those of immediately replanted teeth.Conclusions: The findings of this study suggest that the Euro-Collins solution is an adequate storage medium for keeping avulsed teeth for up to 8 hours before replantation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.
Resumo:
Aflatoxin M-1 (AFM(1)) is a hepatocarcinogen found in milk of animals that have consumed feeds with aflatoxin B-1. The carry-over of AFM(1) from milk to Minas Frescal cheese produced with or without starter cultures was determined. 40 L of milk were divided into 10 L each and assigned to the following treatments for cheese manufacture: 0.250 rig AFM(1) mL(-1), 0.500 rig AFM(1) mL(-1), 0.250 ng AFM(1) mL(-1) + starter, 0.500 ng AFM(1) mL(-1) + starter. Quantification of AFM(1) was achieved by high performance liquid chromatography. The carry-over of AFM(1) from milk to cheese ranged from 30.64% to 42.26%. There was no effect of storage time on AFM(1). Milk with AFM(1) in levels studied may concentrate the toxin in Minas Frescal cheese, but at concentrations below the Brazilian tolerance limit. The addition of starter cultures did not influence concentration or stability of the AFM(1) in cheese over 30 days storage. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study reports the implementation of GMPs in a mozzarella cheese processing plant. The mozzarella cheese manufacturing unit is located in the Southwestern region of the state of Parana, Brazil, and processes 20,000 L of milk daily. The implementation of GMP took place with the creation of a multi-disciplinary team and it was carried out in four steps: diagnosis, report of the diagnosis and road map, corrective measures and follow-up of GMP implementation. The effectiveness of actions taken and GMP implementation was compared by the total percentages of non-conformities and conformities before and after implementation of GMR Microbiological indicators were also used to assess the implementation of GMP in the mozzarella cheese processing facility. Results showed that the average percentage of conformity after the implementation of GMP was significant increased to 66%, while before it was 32% (p < 0.05). The populations of aerobic microorganisms and total coliforms in equipment were significantly reduced (p < 0.05) after the implementation of GMP, as well as the populations of total coliforms in the hands of food handlers (p < 0.05). In conclusion, GMP implementation changed the overall organization of the cheese processing unity, as well as managers and food handlers' behavior and knowledge on the quality and safety of products manufactured. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nisin is a promising alternative to chemical preservatives for use as a natural biopreservative in foods. This bacteriocin has also potential biomedical applications. Lactic acid bacteria are commonly cultivated in expensive standard complex media. We have evaluated the cell growth and nisin production of Lactococcus lactis in a low-cost natural medium consisting of diluted skimmed milk in a 2-L bioreactor. The assays were performed at 30 degrees C for 56 h, at varying agitation speeds and airflow rates: (1) 200 rpm (no airflow, and airflow at 0.5, 1.0 and 2.0 L/min); (2) 100 rpm (no airflow, and airflow at 0.5 L/min). Nisin activity was evaluated using agar diffusion assays. The highest nisin concentration, 49.88 mg/L (3.3 log AU/mL or 1,995.29 AU/mL), was obtained at 16 h of culture, 200 rpm and no airflow (k(L)a = 5.29 x 10(-3)). These results show that a cultivation medium composed of diluted skimmed milk supports cell growth to facilitate nisin biosynthesis.
Resumo:
The coagulation of milk is the fundamental process in cheese-making, based on a gel formation as consequence of physicochemical changes taking place in the casein micelles, the monitoring the whole process of milk curd formation is a constant preoccupation for dairy researchers and cheese companies (Lagaude et al., 2004). In addition to advances in composition-based applications of near infrared spectroscopy (NIRS), innovative uses of this technology are pursuing dynamic applications that show promise, especially in regard to tracking a sample in situ during food processing (Bock and Connelly, 2008). In this way the literature describes cheese making process applications of NIRS for curd cutting time determination, which conclude that NIRS would be a suitable method of monitoring milk coagulation, as shown i.e. the works published by Fagan et al. (Fagan et al., 2008; Fagan et al., 2007), based in the use of the commercial CoAguLite probe (with a LED at 880nm and a photodetector for light reflectance detection).
Resumo:
The distribution of mould species was examined at several points of the processing chain in a Manchego cheese plant and associated dairy farms. Geotrichum and Fusarium were the most frequent genera isolated in milk samples as well as in 1-month ripened cheeses, evidencing a direct transfer from raw milk. Conversely, the mycobiota of long-ripened cheeses consisted mainly of Penicillium species, which gained entry to the cheese through the air of ripening rooms. This study contributes to the understanding of the dynamics of fungal populations in semihard and hard cheeses, highlighting that airborne transfer from the stables could have a direct impact on their quality.
Resumo:
Includes index.
Resumo:
The textures of yogurt made from ultra-high temperature (UHT) treated and conventionally treated milks at high total solids were investigated. The yogurt premixes, fortified with low-heat skim milk powder to 16%, 18%, and 20% total solids, were UHT processed at 143 degreesC for 6 s and heated at 85 degreesC for 30 min using the conventional method. The onset of gelation was delayed in the UHT-processed milk compared with conventionally heated milk. During fermentation, the viscosity of yogurt made, from UHT-treated milk at 20% total solids was close to that of yogurt made from conventionally treated milk with 16% total solids. However, after storage for greater than or equal to1 d, the yogurt made from UHT-treated milk had lower viscosity and gel strength than the yogurt made from conventionally treated milk. The solids level had no influence on yogurt culture growth.
Resumo:
Methyl ketones, aldehydes and free saturated fatty acids were measured in the headspace of samples of two indirectly processed and two directly processed Australian commercial UHT milks during room temperature storage for 16 weeks. The analytes were isolated using headspace solid phase microextraction and analysed by gas chromatography coupled with flame ionisation detection. All methyl ketones and aldehydes increased during storage, With free saturated fatty acids exhibiting little change. On average, the total methyl ketone and aldehyde concentrations in the indirectly processed UHT milks were higher than those in the directly processed samples. A strong correlation was found between the concentration of methyl ketones and various heat indices (furosine, lactulose and undenatured whey proteins) in the milk samples.