826 resultados para Midcontinent Rift


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot brines in depressions of the central Red Sea contain thousands of times more iron, manganese and other metals than . After removal of salts, approximately half of sediments from these depressions consists of iron hydroxides and they are enriched in zinc, copper, lead and molybdenum. Hydrothermal deposits with the same complex of metals, located along the coast of the Red Sea, are correlated with faults and may be due to occurrences of Tertiary volcanism. Brines of similar composition are known in the Cheleken Peninsula. Certain geological and geochemical data indicate that such brines are of relatively deep origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prehnite-pumpellyite facies metamorphism is described in the oceanic-arc basement rocks of Ocean Drilling Program Leg 126, Site 791 in the Sumisu Rift, western Pacific. Chemical variations of pumpellyite, epidote, chlorite, and prehnite are examined and paragenetic relations discussed. The metamorphism took place during the pre-rifting stage of an intraoceanic arc. During the backarc rifting stage, the geothermal gradient of the area was not as high as that of a spreading mid-oceanic ridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or olivine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from < 100 A to a few hundred A. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystallinity of saponite. By contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of A thick. The Si/(Si + A1) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe + Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+A1) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite ± mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of ~1-m.y.-old dikes and lavas from the north wall of the Hess Deep Rift (2°15'N, 101°30'W) collected during Alvin expeditions provides a detailed view of the evolution of fast spreading oceanic crust. The study area encompasses 25 km of an east-west flow line, representing ~370,000 years of crustal accretion at the East Pacific Rise. Samples analyzed exhibit depleted incompatible trace element abundances and ratios [(La/Sm)N < 1]. Indices of fractionation (MgO), and incompatible element ratios (La/Sm, Nb/Ti) show no systematic trends along flow line. Rather, over short (<4 m) and long (~25 km) distances, significant variations are observed in major and trace element concentrations and ratios. Modeling of these variations attests to the juxtaposition of dikes of distinct parental magma compositions. These findings, combined with studies of segmentation of the subaxial magma chamber and lateral magma transport in dikes along rift-dominated systems, suggest a more realistic model of the magmatic system underlying the East Pacific Rise relative to the commonly assumed twodimensional model. In this model, melts from a heterogeneous mantle feed distinct portions of a segmented axial magma reservoir. Dikes emanating from these distinct reservoirs transport magma along axis, resulting in interleaved dikes and host lavas with different evolutionary histories. This model suggests the use of axial or flow line lava compositions to infer the evolution of axial magma chambers should be approached with caution because dikes may never erupt lava or may transport magma significant distances along axis and erupt lavas far from their axial magma chamber of origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barite crusts were formed by an intermittent hydrothermal vent with output temperature from 85 to 465°C. Principal sources of supply of sulfate sulfur are sea water, evaporites, and tholeiitic basalts of the Red Sea rift. Sulfides and sulfates were formed in conditions of isotope disequilibrium with respect to sulfur because rate of precipitation of sulfur compounds from hydrothermal solution was high compared with rate of isotope exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on nephelometry, CTD probing, and dissolved manganese obtained during Cruise 34 of R/V Akademik Mstislav Keldysh showed that a multiplume was found over the Mid-Atlantic Ridge rift zone near 29°N. This multiplume comprises plumes of several hydrothermal vents and is separate from the plume of the Broken Spur hydrothermal field. Approximate coordinates were estimated for three vents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 126, we recovered three expanded Pleistocene sections from the active backarc rift (Sumisu Rift) and three expanded Oligocene-Miocene sections from the forearc basin of the Izu-Bonin volcanic island arc. Quantitative analysis of the Pleistocene nannofossils revealed five major assemblages between 0 and LO Ma: Assemblage 1 (Holocene-0.085 Ma) contains dominant Emiliania huxleyi; Assemblage 2 (ca. 0.085-0.275 Ma) contains dominant small Gephyrocapsa and common E. huxleyi and Gephyrocapsa oceanica; Assemblage 3 (ca. 0.275-0.6 Ma) contains dominant Gephyrocapsa caribbeanica; Assemblage 4 (ca. 0.6-0.9 Ma) contains a peak abundance of small Gephyrocapsa in the middle part, and dominant occurrences of two types of G. caribbeanica in the lower and upper parts; and Assemblage 5 (ca. 0.9-1.0 Ma) contains dominant small Gephyrocapsa and common G. caribbeanica and Reticulofenestra asanoi. These assemblages are largely synchronous with similar assemblages recognized from tropical and subtropical regions, and can be used for finer subdivision of the Pleistocene than that based on standard Pleistocene nannofossil datums. The Oligocene-Miocene sections contain several hiatuses: up to 3 m.y. may be missing from the uppermost Oligocene (Zone CP19) at Sites 792 and 793; all of Zone CN2 is missing at Sites 792 and 793; part of Zone CN3 and all of Zone CN4 are missing at Site 792. Biochronology of several nannofossil datums at Leg 126 sites indicate that Sphenolithus distentus, Sphenolithus ciperoensis, Cyclicargolithus floridanus, and Discoaster kugleri have diachronous occurrences compared with other sites in the western Pacific Ocean and Philippine Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium isotopes are useful tracers of fluid-rock interaction in marine hydrothermal systems and provide a potential way to quantify the amount of seawater that passes through these systems. We have determined the whole-rock Sr-isotopic compositions of a section of upper oceanic crust that formed at the fast-spreading East Pacific Rise, now exposed at Hess Deep. This dataset provides the first detailed comparison for the much-studied Ocean Drilling Program (ODP) drill core from Site 504B. Whole-rock and mineral Sr concentrations indicate that Sr-exchange between hydrothermal fluids and the oceanic crust is complex, being dependent on the mineralogical reactions occurring; in particular, epidote formation takes up Sr from the fluid increasing the 87Sr/86Sr of the bulk-rock. Calculating the fluid-flux required to shift the Sr-isotopic composition of the Hess Deep sheeted-dike complex, using the approach of Bickle and Teagle (1992, doi:10.1016/0012-821X(92)90221-G) gives a fluid-flux similar to that determined for ODP Hole 504B. This suggests that the level of isotopic exchange observed in these two regions is probably typical for modern oceanic crust. Unfortunately, uncertainties in the modeling approach do not allow us to determine a fluid-flux that is directly comparable to fluxes calculated by other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of rare earth element (REE) distribution and behavior in ore-bearing hydrothermal-sedimentary deposits from the Red Sea is carried out. Geochemical patterns and mechanisms of REE accumulation in metalliferous sediments of the open ocean and in deposits adjoined to areas of hydrothermal discharge are shown. Main factors, which determine composition of REE and the level of their accumulation in hydrothermal occurrences of the Red Sea, are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of studies of hydrothermal sulfide-sulfate rocks occurring in the Atlantis II Deep of the Red Sea are reported in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Hole 504B near the Costa Rica Rift is the deepest hole drilled in the ocean crust, penetrating a volcanic section, a transition zone and a sheeted dike complex. The distribution of Li and its isotopes through this 1.8-km section of oceanic crust reflects the varying conditions of seawater alteration with depth. The upper volcanic rocks, altered at low temperatures, are enriched in Li (5.6-27.3 ppm) and have heavier isotopic compositions (delta7Li=6.6-20.8?) relative to fresh mid-ocean ridge basalt (MORB) due to uptake of seawater Li into alteration clays. The Li content and isotopic compositions of the deeper volcanic rocks are similar to MORB, reflecting restricted seawater circulation in this section. The transition zone is a region of mixing of seawater with upwelling hydrothermal fluids and sulfide mineralization. Li enrichment in this zone is accompanied by relatively light isotopic compositions (-0.8-2.1?) which signify influence of basalt-derived Li during mineralization and alteration. Li decreases with depth to 0.6 ppm in the sheeted dike complex as a result of increasing hydrothermal extraction in the high-temperature reaction zone. Rocks in the dike complex have variable isotopic values that range from -1.7 to 7.9?, depending on the extent of hydrothermal recrystallization and off-axis low-temperature alteration. Hydrothermally altered rocks are isotopically light because 6Li is preferentially retained in greenschist and amphibolite facies minerals. The delta7Li values of the highly altered rocks of the dike complex are complementary to those of high-temperature mid-ocean ridge vent fluids and compatible to equilibrium control by the alteration mineral assemblage. The inventory of Li in basement rocks permits a reevaluation of the role of oceanic crust in the budget of Li in the ocean. On balance, the upper 1.8 km of oceanic crusts remains a sink for oceanic Li. The observations at 504B and an estimated flux from the underlying 0.5 km of gabbro suggest that the global hydrothermal flux is at most 8*10**9 mol/yr, compatible with geophysical thermal models. This work defines the distribution of Li and its isotopes in the upper ocean crust and provides a basis to interpret the contribution of subducted lithosphere to arc magmas and cycling of crustal material in the deep mantle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The northwest trending walls of the Pito Deep Rift (PDR), a tectonic window in the southeast Pacific, expose in situ oceanic crust generated ?3 Ma at the superfast spreading southern East Pacific Rise (SEPR). Whole rock analyses were performed on over 200 samples of dikes and lavas recovered from two ~8 km**2 study areas. Most of the PDR samples are incompatible-element-depleted normal mid-ocean ridge basalts (NMORB; (La/Sm)N < 1.0) that show typical tholeiitic fractionation trends. Correlated variations in Pb isotope ratios, rare earth element patterns, and ratios of incompatible elements (e.g., (Ce/Yb)N) are best explained by mixing curves between two enriched and one depleted mantle sources. Pb isotope compositions of most PDR NMORB are offset from SEPR data toward higher values of 207Pb/204Pb, suggesting that an enriched component of the mantle was present in this region in the past ?3 Ma but is not evident today. Overall, the PDR crust is highly variable in composition over long and short spatial scales, demonstrating that chemically distinct lavas and dikes can be emplaced within the same segment over short timescales. However, the limited spatial distribution of high 206Pb/204Pb samples and the occurrence of relatively homogeneous MgO compositions (ranging <2.5 wt %) within a few of the individual dive transects (over distances of ~1 km) suggests that the mantle source composition evolved and magmatic temperatures persisted over timescales of tens of thousands of years. The high degree of chemical variability between pairs of adjacent dikes is interpreted as evidence for along-axis transport of magma from chemically distinct portions of the melt lens. Our findings suggest that lateral dike propagation occurs to a significant degree at superfast spreading centers.