965 resultados para Microwave dielectric properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper deals with the study of the effects of electron (8 MeV) irradiation on the dielectric and ferroelectric properties of PbZrO3 thin films grown by sol-gel technique. The films were (0.62 mu m thick) subjected to electron irradiation using Microtron accelerator (delivered dose 80, 100, 120 kGy). The films were well crystallized prior to and after electron irradiation. However, local amorphization was observed after irradiation. There is an appreciable change in the dielectric constant after irradiation with different delivered doses. The dielectric loss showed significant frequency dispersion for both unirradiated and electron irradiated films. T (c) was found to shift towards higher temperature with increasing delivered dose. The effect of radiation induced increase of E >'(T) is related to an internal bias field, which is caused by radiation induced charges trapped at grain boundaries. The double butterfly loop is retained even after electron irradiation to the different delivered doses. The broader hysteresis loop seems to be related to radiation induced charges causing an enhanced space charge polarization. Radiation-induced oxygen vacancies do not change the general shape of the AFE hysteresis loop but they increase P (s) of the hysteresis at the electric field forced AFE to FE phase transition. We attribute the changes in the dielectric properties to the structural defects such as oxygen vacancies and radiation induced charges. The shift in T (C), increase in dielectric constant, broader hysteresis loop, and increase in P (r) can be related to radiation induced charges causing space charge polarization. Double butterfly and hysteresis loops were retained indicative of AFE nature of the films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of pressure on the dielectric properties of ferroelectric DTAAP has been carried out upto about 4 Kbars. The dTc/dP value was found to be -1.65°C/Kbar. It was noted that the value of dTc/dP is 1.63 times smaller in DTAAP as compared to TAAP, where as Tc itself is 1.13 times larger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the synthesis structures and dielectric properties of new perovskite oxides of the formula (Ba3MTiMO9)-Ti-III-O-V for M-III = Fe Ga Y Lu and M-V = Nb Ta Sb While M-V = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where M-III/Ti/M-V metal-oxygen octahedra are corner connected the M-V = Sb oxides show a distinct preference for the 6H structure where Sb-V/Ti-IV metal-oxygen octahedra share a common face forming (Sb Ti)O-9 dimers that are corner-connected to the (MO6)-O-III octahedra The preference of antimony oxides (Sb-V 4d(10)) for the 6H structure which arises from a special Sb-V-O chemical bonding that tends to avoid linear Sb-O-Sb linkages unlike Nb-V/Ta-V d(0) atoms which prefer similar to 180 degrees Nb/Ta-O-Nb/Ta linkages - is consistent with the crystal chemistry of M-V-O oxides in general The dielectric properties reveal a significant difference among Mill members All the oxides with the 3C structure excepting those with Mill = Fe show a normal low loss dielectric behaviour with epsilon = 20-60 in the temperature range 50-400 degrees C the M-III = Fe members with this structure (M-V = Nb Ta) display a relaxor-like ferroelectric behaviour with large E values at frequencies <= 1 MHz (50-500 degrees C) (C) 2010 Elsevier Masson SAS All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric properties of potassium titanyl phosphate have been investigated as a function of thickness and frequency, as well as annealing treatment under various atmospheres. The low frequency dielectric constant of KTP crystals is shown to depend upon the sample thickness, and this feature is attributed to the existence of surface layers. The frequency-dependent dielectric response of KTP exhibits a non-Debye type relaxation, with a distribution of relaxation times. The dielectric behavior of KTP samples annealed in various atmospheres shows that the low frequency dielectric constant is influenced by the contribution from the space charge layers. Prolonged annealing of the samples leads to a surface degradation, resulting in the formation of a surface layer of lower dielectric constant. This surface degradation is least when annealed in the presence of dry oxygen. From the analysis of the dielectric data using complex electric modulus, alpha(m) has been evaluated for the virgin and annealed samples. (C) 1996 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perovskite structure in Pb(Zn1/3Nb2/3)O3 can be stabilized by the addition of Pb(Ni1/3Nb2/3)O3 and PbTiO3.Pb(Ni1/3Nb2/3)O3 assists in lowering the sintering temperature and shifting the Curie temperature of ceramics while PbTiO3 helps to optimize the dielectric properties. The phase stability and dielectric properties of several compositions in the Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3 ternary relaxor ferroelectric system were investigated for possible capacitor applications. The effect of calcining and sintering temperature on the stability of perovskite phase in PZN rich compositions was studied extensively as a function of composition. The boundary line separating perovskite and mixed phases was determined for compositions near PZN. Several compositions can be sintered below 1050°C. The dielectric properties of compositions near the mixed phase boundary showed strong dependence on the percentage of pyrochlore phase. Compositions with a dielectric constant of 12.500 at room temperature have been identified which meet Z5T and Y5U specifications for dielectric constant and tan δ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi2NbxV1-xO5.5 ceramics with x ranging from 0.01 to 0.5 have been prepared. The crystal system transforms from an orthorhombic to tetragonal at x greater than or equal to 0.1 and it persists until x = 0.5. Scanning electron microscopic (SEM) investigations carried out on thermally etched Bi2NbxV1-xO5.5 ceramics confirm that the grain size decreases markedly (18 mu m to 4 mu m) with increasing x. The shift in the Curie temperature (725 K) toward lower temperatures, with increasing x, is established by Differential Scanning Calorimetry (DSC). The dielectric constants as well as the loss tangent (tan delta) decrease with increasing x at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel solid solution in the system Bi-W-Cu-O has been synthesized and its structural and dielectric properties studied. The solid solution Bi2O3-(1-x)WO3-xCuO exists up to x = 0.7; the solid solutions up to x = 0.65 are orthorhombic but stabilize in tetragonal structure in a narrow range around x = 0.7. The solid solutions are non-centrosymmetric and exhibit ferroelectric behaviour similar to their parent phase Bi2WO6. The Curie point of the solid solution is found to decrease with increase in x.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the Ba2Zn1-xCdxTa2O9 (0 less than or equal to x less than or equal to 1) series have been synthesized by solid state reactions at 1473K. Powder x-ray diffraction studies show a cubic perovskite cell with a similar to 4.1 Angstrom which increases with increase in x. Electron diffraction studies show the presence of hexagonal ordered perovskite structure in addition to the cubic structure seen by x-rays, the x = 0.5 composition showing more ordered crystallites. These samples show high dielectric constants with a maximum (epsilon(r) = 30 at 1 kHz) for the x = 0.5 member. The dielectric loss increases with increase in x at all the frequencies under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of KCI addition on the microstructural, structural and dielectric properties of bismuth vanadate, Bi2VO5.5 (BiV) has been examined. The average grain size of BN ceramics increases with increase in KCl content (from an average grain size of TO to 80 mu m) as a result of the increased liquid-phase formation of KCI, at the grain boundaries. Differential scanning calorimetry (DSC) carried out on the KCl-added samples indicates an upward shift in the transition temperature (T-c), from 723 K (for BN) to 734 K (for 5 mol% KCl-added BiV). On further increase in the KCI content, T-c shifts down to about 722 K for 10 mol%. This trend is consistent with that of the lattice strain data. The relative permittivity as well as the dielectric loss decrease by more than half of the original values upon the addition of KCI. The relative permittivities of the KCl-added ceramics are comparable with the values predicted by the logarithmic mixture rule. Impedance analyses suggest that the grain boundary resistance of the KCl-added BiV ceramics is higher by two orders of magnitude than that of BN ceramics. The KCl-added BN ceramics exhibit ferroelectric domains and the domain density decreases as the grain boundary region is approached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he thickness dependence of the electrical properties in the thin films of uniaxial SrBi2Nb2O9 has been studied in this report. According to many published literatures, it could be an effective way to identify the basic conduction process. The laser ablation was chosen as the deposition technique to ensure an oriented growth and a proper stoichiometric deposition. The structural, dielectric and conduction properties were studied as a function of thickness. The films showed good ferroelectric properties, an ordered growth, and a space-charge controlled conduction process, which was double checked by reversing the polarity of the applied voltage, and also by examining the high field current response of the sample varying in thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi2Nbx V1−xO5.5 ceramics with x ranging from 0.01 to 0.5 have been prepared. The crystal system transforms from an orthorhombic to tetragonal at x 3= 0.1 and it persists until x = 0.5. Scanning electron microscopic (SEM) investigations carried out on thermally etched Bi2NbxV1−xO5.5 ceramics confirm that the grain size decreases markedly (18 μm to 4 μm) with increasing x. The shift in the Curie temperature (725 K) toward lower temperatures, with increasing x, is established by Differential Scanning Calorimetry (DSC). The dielectric constants as well as the loss tangent (tan δ) decrease with increasing x at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DC electric field induced dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were studied as a function of frequency at different temperatures. It was observed that the dielectric constant (ε) and dissipation factor (tanδ) were decreased in presence of bias field. The temperature of dielectric maxima was found to increase with increasing bias level. The low temperature (dielectric permittivity was suppressed with the application of dc bias. After a certain bias voltage the relaxor property of films was disappeared i.e. the films exhibited normal ferroelectric behavior. Since the absence of long range interaction among the nanopolar clusters in PMN and its family is believed to be the origin of relaxor behavior, disappearance of relaxor nature in PMN-PT (70/30) films could be attributed to manifestation of long-range order at higher bias voltage. This was observed in the temperature dependence of dielectric constant i.e. the films neither exhibited any frequency dispersion in the temperature of dielectric maximum (Tm) nor showed any diffused phase transition. The relaxor property of PMN-PT thin films was studied in terms of diffused phase transition together with frequency dispersion of the temperature of dielectric maximum (Tm). Vogel-Fulcher relation was used to analyze the frequency dependence of temperature of dielectric maximum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric response of BaBi2Nb2O9 (BBN) thin films has been studied as a function of frequency over a wide range of temperatures. Both dielectric constant and loss tangent of BBN thin films showed a ‘power law’ dependence with frequency, which was analyzed using the Jonscher's universal dielectric response model. Theoretical fits were utilized to compare the experimental results and also to estimate the value of temperature dependence parameters such as n(T) and a(T) used in the Jonscher's model. The room temperature dielectric constant (ε') of the BBN thin films was 214 with a loss tangent (tanδ) of 0.04 at a frequency of 100 kHz. The films exhibited the second order dielectric phase transition from ferroelectric to paraelectric state at a temperature of 220 °C. The nature of phase transition was confirmed from the temperature dependence of dielectric constant and sponteneous polarization,respectively. The calculated Currie constant for BBN thin films was 4 × 105°C.