958 resultados para Microsatellite genotyping
Resumo:
Premise of the study: We developed a new set of microsatellite markers for studying the genome of the janaguba tree, Himatanthus drasticus (Mart.) Plumel, which is used in folk medicine in northeastern Brazil. These novel markers are being used to evaluate the effect of harvesting on the genetic structure and diversity of natural populations of this species. Methods and Results: Microsatellite loci were isolated from an enriched H. drasticus genomic library. Nine primer pairs successfully amplified polymorphic microsatellite regions, with an average of 8.5 alleles per locus. The average values of observed and expected heterozygosity were 0.456 and 0.601, respectively. Conclusions: The microsatellite markers described here are valuable tools for population genetics studies of H. drasticus. The majority of the primers also amplified sequences in the genome of another species of the same genus. This new set of markers may be useful in designing a genetic conservation strategy and a sustainable management plan for the species.
Resumo:
The ABO blood group is the most important blood group system in transfusion medicine and organ transplantation. To date, more than 160 ABO alleles have been identified by molecular investigation. Almost all ABO genotyping studies have been performed in blood donors and families and for investigation of ABO subgroups detected serologically. The aim of the present study was to perform ABO genotyping in patients with leukemia. Blood samples were collected from 108 Brazilian patients with chronic myeloid leukemia (N = 69), chronic lymphoid leukemia (N = 13), acute myeloid leukemia (N = 15), and acute lymphoid leukemia (N = 11). ABO genotyping was carried out using allele specific primer polymerase chain reaction followed by DNA sequencing. ABO*001 was the most common allele found, followed by ABO*022 and by ABO*A103. We identified 22 new ABO*(variants) in the coding region of the ABO gene in 25 individuals with leukemia (23.2%). The majority of ABO variants was detected in O alleles (15/60.0%). In 5 of 51 samples typed as blood group O (9.8%), we found non-deletional ABO*O alleles. Elucidation of the diversity of this gene in leukemia and in other diseases is important for the determination of the effect of changes in an amino acid residue on the specificity and activity of ABO glycosyltransferases and their function. In conclusion, this is the first report of a large number of patients with leukemia genotyped for ABO. The findings of this study indicate that there is a high level of recombinant activity in the ABO gene in leukemia patients, revealing new ABO variants.
Resumo:
Background: Hepatitis C virus (HCV) genotyping is the most significant predictor of the response to antiviral therapy. The aim of this study was to develop and evaluate a novel real-time PCR method for HCV genotyping based on the NS5B region. Methodology/Principal Findings: Two triplex reaction sets were designed, one to detect genotypes 1a, 1b and 3a; and another to detect genotypes 2a, 2b, and 2c. This approach had an overall sensitivity of 97.0%, detecting 295 of the 304 tested samples. All samples genotyped by real-time PCR had the same type that was assigned using LiPA version 1 (Line in Probe Assay). Although LiPA v. 1 was not able to subtype 68 of the 295 samples (23.0%) and rendered different subtype results from those assigned by real-time PCR for 12/295 samples (4.0%), NS5B sequencing and real-time PCR results agreed in all 146 tested cases. Analytical sensitivity of the real-time PCR assay was determined by end-point dilution of the 5000 IU/ml member of the OptiQuant HCV RNA panel. The lower limit of detection was estimated to be 125 IU/ml for genotype 3a, 250 IU/ml for genotypes 1b and 2b, and 500 IU/ml for genotype 1a. Conclusions/Significance: The total time required for performing this assay was two hours, compared to four hours required for LiPA v. 1 after PCR-amplification. Furthermore, the estimated reaction cost was nine times lower than that of available commercial methods in Brazil. Thus, we have developed an efficient, feasible, and affordable method for HCV genotype identification.
Resumo:
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5'UTR - the most highly conserved region of HCV - and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant (TM) HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant (TM) HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant (TM) HCV assay. Genotype ""1'' subtypes (1a and 1b) were correctly identified by the Versant (TM) HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.
Resumo:
FAPESP[BIOTA 2004/15801-0]
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Microsatellite Polymorphisms in Cassava Landraces from the Cerrado Biome, Mato Grosso do Sul, Brazil
Resumo:
Using nine microsatellite loci, we investigated genetic structure and diversity in 83 Brazilian cassava accessions, including several landraces, in the Cerrado biome in Mato Grosso do Sul, Brazil. All nine loci were polymorphic, averaging 6.00 alleles per locus. Treating each of seven municipalities as a cassava group or population, they averaged 3.5 alleles per locus, with 97% polymorphic loci, high values for observed heterozygosity (0.32) and gene diversity (0.56). Total genetic variability was high (0.668), and most of this genetic variability was concentrated within municipalities (0.577). Cluster and structure analyses divided accessions into two major clusters or populations (K = 2). Also, a significant genetic versus geographic correlation was found (r = 0.4567; P < 0.0260). Migratory routes in the Cerrado are considered main contributors to the region`s high cassava diversity and spatial genetic structure, amplifying interactions between traditional farmers and the evolutionary dynamics of this crop.
Resumo:
Insect societies are well known for their high degree of cooperation, but their colonies can potentially be exploited by reproductive workers who lay unfertilized, male eggs, rather than work for the good of the colony. Recently, it has also been discovered that workers in bumblebees and Asian honeybees can succeed in entering and parasitizing unrelated colonies to produce their own male offspring. The aim of this study was to investigate whether such intraspecific worker parasitism might also occur in stingless bees, another group of highly social bees. Based on a large-scale genetic study of the species Melipona scutellaris, and the genotyping of nearly 600 males from 45 colonies, we show that similar to 20% of all males are workers` sons, but that around 80% of these had genotypes that were incompatible with them being the sons of workers of the resident queen. By tracking colonies over multiple generations, we show that these males were not produced by drifted workers, but rather by workers that were the offspring of a previous, superseded queen. This means that uniquely, workers reproductively parasitize the next-generation workforce. Our results are surprising given that most colonies were sampled many months after the previous queen had died and that workers normally only have a life expectancy of similar to 30 days. It also implies that reproductive workers greatly outlive all other workers. We explain our results in the context of kin selection theory, and the fact that it pays workers more from exploiting the colony if costs are carried by less related individuals.
Resumo:
The use of chloroplast DNA markers (cpDNA) helps to elucidate questions related to ecology, evolution and genetic structure. The knowledge of inter-and intra-population genetic structure allows to design effective conservation and management strategies for tropical tree species. With the aim to help the conservation of Hymenaea stigonocarpa of the Cerrado (Brazilian savanna) in Sao Paulo State, an analysis of the spatial genetic structure (SGS) was conducted in two populations using five universal chloroplast microsatellite loci (cpSSR). The population of 68 trees of H. stigonocarpa in the Ecological Station of Itirapina (ESI) had a single haplotype, indicating a strong founder effect. In turn, the population of 47 trees of H. stigonocarpa in a contiguous area that includes the Ecological Station of Assis and the Assis State Forest (ESA), showed six haplotypes ((n) over cap (h) = 6) with a moderate haplotype diversity ((h) over cap = 0667 + 0094), revealing that it was founded by a small number of maternal lineages. The SGS analysis for the population ESA/ASF, using Moran`s I index, indicated limited seed dispersal. Considering SGS, for ex situ conservation strategies in the population ESA/ASF, seed harvesting should require a minimum distance of 750 m among seed-trees.
Resumo:
A comparative study between microsatellite and allozyme markers was conducted on the genetic structure and mating system in natural populations of Euterpe edulis Mart. Three cohorts, including seedlings, saplings, and adults, were examined in 4 populations using 10 allozyme loci and 10 microsatellite loci. As expected, microsatellite markers had a much higher degree of polymorphism than allozymes, but estimates of multilocus outcrossing rate ((t) over cap (m) = 1.00), as well as estimates of genetic structure (F(IS), G(ST)), were similar for the 2 sets of markers. Estimates of R(ST), for microsatellites, were higher than those of GST, but results of both statistics revealed a close agreement for the genetic structure of the species. This study provides support for the important conclusion that allozymes are still useful and reliable markers to estimate population genetic parameters. Effects of sample size on estimates from hypervariable loci are also discussed in this paper.
Resumo:
Copaifera langsdorffii is a Neotropical tree with wide distribution in the Brazilian Atlantic rain forest and savanna. Although eight microsatellite loci (SSR) were developed in 2000 and have been widely used since then, there is yet no information about their inheritance, linkage and linkage disequilibrium (LD). Through the analysis of 28 open-pollinated (OP) progenies, the SSR loci revealed Mendelian inheritance and independent assortment. Using these progenies, young and adult trees LD was mainly detected in OP progenies. Our results show clear evidence that the eight SSR loci can be used without restriction in genetic diversity, mating system and parentage analysis.
Resumo:
P>Curcuma longa L. is a sterile, triploid, vegetatively-propagated crop cultivated mainly in Southeast Asia. When dried rhizomes are ground, the resulting yellow powder is used by the food industry as a natural food dye. Moreover, many pharmacological compounds have broadened the commercial application of the crop. However, conventional breeding is difficult and hence, improvement has been limited to germplasm selection. To better utilize the germplasm collections and facilitate genotype selection, a total of 17 polymorphic microsatellite loci were developed using a CT/GT/CTT enriched genomic library. All microsatellites resulted in amplified PCR products, showing a banding pattern of 2-11 polymorphic bands per locus, enabling genotype discrimination. These results can be used in further studies aimed at characterizing C. longa genetic resource collections and also to improve breeding strategies.
Resumo:
The tree species Guarea guidonea (Meliaceae) belongs to a predominantly tropical family, being largely found in natural or anthropic forest fragments within the Brazilian Atlantic Forest. Aiming to develop future studies on the genetic structure of plant species from forests fragments, eleven microsatellite markers were developed for Guarea guidonia, based on the analysis of 45 individuals from natural populations of three different fragments within the forest-anthropic edge, interior fragment and natural edge. Only eight loci showed to be polymorphic and the number of alleles ranged from two to four (mean of 2.50). All populations showed almost the same level of genetic diversity (mean H(e) = 0.3775). These loci will be useful for population genetics studies on Guarea guidonea, providing information for the conservation and management of this species.
Resumo:
Castor (Ricinus communis L.) is an important oleaginous plant from both economic and social points of view. The seeds contain an oil with excellent properties for industrial uses. This paper presents the main results of a study aiming to develop microsatellite markers for castor. Twelve new polymorphic microsatellite markers were isolated and characterized in 38 genotypes accessions from the castor germplasm of the Brazilian Agricultural Research Company (EMBRAPA). Knowledge on the genetic diversity of castor can be used to gain a better understanding on genetic diversity conservation, and germplasm management, guiding breeding programs and conservation strategies.