958 resultados para Microsatellite Repeats


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many species contain genetic lineages that are phylogenetically intermixed with those of other species. In the Sorex araneus group, previous results based on mtDNA and Y chromosome sequence data showed an incongruent position of Sorex granarius within this group. In this study, we explored the relationship between species within the S. araneus group, aiming to resolve the particular position of S. granarius. In this context, we sequenced a total of 2447 base pairs (bp) of X-linked and nuclear genes from 47 individuals of the S. araneus group. The same taxa were also analyzed within a Bayesian framework with nine autosomal microsatellites. These analyses revealed that all markers apart from mtDNA showed similar patterns, suggesting that the problematic position of S. granarius is best explained by an incongruent behavior by mtDNA. Given their close phylogenetic relationship and their close geographic distribution, the most likely explanation for this pattern is past mtDNA introgression from S. araneus race Carlit to S. granarius.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The species and races of the shrews of the Sorex araneus group exhibit a broad range of chromosomal polymorphisms. European taxa of this group are parapatric and form contact or hybrid zones that span an extraordinary variety of situations, ranging from absolute genetic isolation to almost free gene flow. This variety seems to depend for a large part on the chromosome composition of populations, which are primarily differentiated by various Robertsonian fusions of a subset of acrocentric chromosomes. Previous studies suggested that chromosomal rearrangements play a causative role in the speciation process. In such models, gene flow should be more restricted for markers on chromosomes involved in rearrangements than on chromosomes common in both parent species. In the present study, we address the possibility of such differential gene flow in the context of two genetically very similar but karyotypically different hybrid zones between species of the S. araneus group using microsatellite loci mapped to the chromosome arm level. Interspecific genetic structure across rearranged chromosomes was in general larger than across common chromosomes. However, the difference between the two classes of chromosomes was only significant in the hybrid zone where the complexity of hybrids is expected to be larger. These differences did not distinguish populations within species. Therefore, the rearranged chromosomes appear to affect the reproductive barrier between karyotypic species, although the strength of this effect depends on the complexity of the hybrids produced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A leading hypothesis linking parasites to social evolution is that more genetically diverse social groups better resist parasites. Moreover, group diversity can encompass factors other than genetic variation that may also influence disease resistance. Here, we tested whether group diversity improved disease resistance in an ant species with natural variation in colony queen number. We formed experimental groups of workers and challenged them with the fungal parasite Metarhizium anisopliae. Workers originating from monogynous colonies (headed by a single queen and with low genetic diversity) had higher survival than workers originating from polygynous ones, both in uninfected groups and in groups challenged with M. anisopliae. However, an experimental increase of group diversity by mixing workers originating from monogynous colonies strongly increased the survival of workers challenged with M. anisopliae, whereas it tended to decrease their survival in absence of infection. This experiment suggests that group diversity, be it genetic or environmental, improves the mean resistance of group members to the fungal infection, probably through the sharing of physiological or behavioural defences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In sharp contrast to birds and mammals, most cold-blooded vertebrates have homomorphic (morphologically undifferentiated) sex chromosomes. This might result either from recurrent X-Y recombination (occurring e.g. during occasional events of sex reversal) or from frequent turnovers (during which sex-determining genes are overthrown by new autosomal mutations). Evidence for turnovers is indeed mounting in fish, but very few have so far been documented in amphibians, possibly because of practical difficulties in identifying sex chromosomes. Female heterogamety (ZW) has long been established in Bufo bufo, based on sex reversal and crossing experiments. Here, we investigate a sex-linked marker identified from a laboratory cross between Palearctic green toads (Bufo viridis subgroup). The F(1) offspring produced by a female Bufo balearicus and a male Bufo siculus were phenotypically sexed, displaying an even sex ratio. A sex-specific marker detected in highly reproducible AFLP genotypes was cloned. Sequencing revealed a noncoding, microsatellite-containing fragment. Reamplification and genotyping of families of this and a reciprocal cross showed B. siculus to be male heterogametic (XY) and suggested the same system for B. balearicus. Our results thus reveal a cryptic heterogametic transition within bufonid frogs and help explain patterns of hybrid fitness within the B. viridis subgroup. Turnovers of genetic sex-determination systems may be more frequent in amphibians than previously thought and thus contribute to the prevalence of homomorphic sex chromosomes in this group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many models of sex-biased dispersal predict that the direction of sex-bias depends upon a species' mating system. In agreement with this, almost all polygynous mammals show male-biased dispersal whereas largely monogamous birds show female-biased dispersal (FBD). The hamadryas baboon (Papio hamadryas hamadryas) is polygynous and so dispersal is predicted to be male biased, as is found in all other baboon subspecies, but there are conflicting field data showing both female and male dispersal. Using 19 autosomal genetic markers genotyped in baboons from four Saudi Arabian populations, we found strong evidence for FBD in post-dispersal adults but not, as expected, in pre-dispersal infants and young juveniles, when we compared male and female: population structure (F(st)), inbreeding (F(is)), relatedness (r), and the mean assignment index (mAIc). Furthermore, we found evidence for female-biased gene flow as population genetic structure (F(st)), was about four times higher for the paternally inherited Y, than for either autosomal markers or for maternally inherited mtDNA. These results contradict the direction of sex-bias predicted by the mating system and show that FBD has evolved recently from an ancestral state of male-biased dispersal. We suggest that the cost-benefit balance of dispersal to males and females is tightly linked to the unique hierarchical social structure of hamadryas baboons and that dispersal and social organization have coevolved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is important to characterise the amount of variation on the mammalian Y chromosome in order to assess its potential for use in evolutionary studies. We report very low levels of polymorphism on the Y chromosome of Saudi-Arabian hamadryas baboons, Papio hamadryas hamadryas. We found no segregating sites on the Y, despite sequence analysis of 3 kb noncontiguous intron sequence in 16 males with divergent autosomal microsatellite genotypes, and a further analysis of 1.1 kb intron sequence in 97 males from four populations by SSCP. In addition, we tested seven human-derived Y-linked microsatellites in baboons. Only four of these loci were male-specific and only one was polymorphic in our 97 male sample set. Polymorphism on the Y chromosome of Arabian hamadryas appears to be low compared to other primate species for which data are available (eg humans, chimpanzees and bonobos). Low effective population size (Ne) of paternal genes due to polygyny and female-biased adult sex ratio is a potential reason for low Y chromosome variation in this species. However, low Ne for the Y should be counterbalanced to some extent by the species' atypical pattern of male philopatry and female-biased dispersal. Allelic richness averaged over seven loci was not significantly different between an African and an Arabian population, suggesting that loss of variation during the colonisation of Arabia does not explain low Y variation. Finally, in the absence of nucleotide polymorphism, it is unclear to what extent selection could be responsible for low Y variation in this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A family history of coronary artery disease (CAD), especially when the disease occurs at a young age, is a potent risk factor for CAD. DNA collection in families in which two or more siblings are affected at an early age allows identification of genetic factors for CAD by linkage analysis. We performed a genomewide scan in 1,168 individuals from 438 families, including 493 affected sibling pairs with documented onset of CAD before 51 years of age in men and before 56 years of age in women. We prospectively defined three phenotypic subsets of families: (1) acute coronary syndrome in two or more siblings; (2) absence of type 2 diabetes in all affected siblings; and (3) atherogenic dyslipidemia in any one sibling. Genotypes were analyzed for 395 microsatellite markers. Regions were defined as providing evidence for linkage if they provided parametric two-point LOD scores >1.5, together with nonparametric multipoint LOD scores >1.0. Regions on chromosomes 3q13 (multipoint LOD = 3.3; empirical P value <.001) and 5q31 (multipoint LOD = 1.4; empirical P value <.081) met these criteria in the entire data set, and regions on chromosomes 1q25, 3q13, 7p14, and 19p13 met these criteria in one or more of the subsets. Two regions, 3q13 and 1q25, met the criteria for genomewide significance. We have identified a region on chromosome 3q13 that is linked to early-onset CAD, as well as additional regions of interest that will require further analysis. These data provide initial areas of the human genome where further investigation may reveal susceptibility genes for early-onset CAD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. RESULTS: Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. CONCLUSION: ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To report a novel phenotype of autosomal dominant atypical congenital cataract associated with variable expression of microcornea, microphthalmia, and iris coloboma linked to chromosome 2. Molecular analysis of this phenotype may improve our understanding of anterior segment development. DESIGN: Observational case study, genome linkage analysis, and gene mutation screening. PARTICIPANTS: Three families, 1 Egyptian and 2 Belgians, with a total of 31 affected were studied. METHODS: Twenty-one affected subjects and 9 first-degree relatives underwent complete ophthalmic examination. In the Egyptian family, exclusion of PAX6, CRYAA, and MAF genes was demonstrated by haplotype analysis using microsatellite markers on chromosomes 11, 16, and 21. Genome-wide linkage analysis was then performed using 385 microsatellite markers on this family. In the 2 Belgian families, the PAX6 gene was screened for mutations by direct sequencing of all exons. MAIN OUTCOME MEASURES: Phenotype description, genome-wide linkage of the phenotype, linkage to the PAX6, CRYAA, and MAF genes, and mutation detection in the PAX6 gene. RESULTS: Affected members of the 3 families had bilateral congenital cataracts inherited in an autosomal dominant pattern. A novel form of hexagonal nuclear cataract with cortical riders was expressed. Among affected subjects with available data, 95% had microcornea, 39% had microphthalmia, and 38% had iris coloboma. Seventy-five percent of the colobomata were atypical, showing a nasal superior location in 56%. A positive lod score of 4.86 was obtained at theta = 0 for D2S2309 on chromosome 2, a 4.9-Mb common haplotype flanked by D2S2309 and D2S2358 was obtained in the Egyptian family, and linkage to the PAX6, CRYAA, or MAF gene was excluded. In the 2 Belgian families, sequencing of the junctions and all coding exons of PAX6 did not reveal any molecular change. CONCLUSIONS: We describe a novel phenotype that includes the combination of a novel form of congenital hexagonal cataract, with variably expressed microcornea, microphthalmia, and atypical iris coloboma, not caused by PAX6 and mapping to chromosome 2. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fire ant Solenopsis invicta is a significant pest that was inadvertently introduced into the southern United States almost a century ago and more recently into California and other regions of the world. An assessment of genetic variation at a diverse set of molecular markers in 2144 fire ant colonies from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta have occurred into newly invaded areas and that the main southern U.S. population is probably the source of all but one of these introductions. The sole exception involves a putative serial invasion from the southern United States to California to Taiwan. These results illustrate in stark fashion a severe negative consequence of an increasingly massive and interconnected global trade and travel system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insect societies are paramount examples of cooperation, yet they also harbor internal conflicts whose resolution depends on the power of the opponents. The male-haploid, female-diploid sex-determining system of ants causes workers to be more related to sisters than to brothers, whereas queens are equally related to daughters and sons. Workers should thus allocate more resources to females than to males, while queens should favor an equal investment in each sex. Female-biased sex allocation and manipulation of the sex ratio during brood development suggest that workers prevail in many ant species. Here, we show that queens of Formica selysi strongly influenced colony sex allocation by biasing the sex ratio of their eggs. Most colonies specialized in the production of a single sex. Queens in female-specialist colonies laid a high proportion of diploid eggs, whereas queens in male-specialist colonies laid almost exclusively haploid eggs, which constrains worker manipulation. However, the change in sex ratio between the egg and pupae stages suggests that workers eliminated some male brood, and the population sex-investment ratio was between the queens' and workers' equilibria. Altogether, these data provide evidence for an ongoing conflict between queens and workers, with a prominent influence of queens as a result of their control of egg sex ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microsatellite loci mutate at an extremely high rate and are generally thought to evolve through a stepwise mutation model. Several differentiation statistics taking into account the particular mutation scheme of the microsatellite have been proposed. The most commonly used is R(ST) which is independent of the mutation rate under a generalized stepwise mutation model. F(ST) and R(ST) are commonly reported in the literature, but often differ widely. Here we compare their statistical performances using individual-based simulations of a finite island model. The simulations were run under different levels of gene flow, mutation rates, population number and sizes. In addition to the per locus statistical properties, we compare two ways of combining R(ST) over loci. Our simulations show that even under a strict stepwise mutation model, no statistic is best overall. All estimators suffer to different extents from large bias and variance. While R(ST) better reflects population differentiation in populations characterized by very low gene-exchange, F(ST) gives better estimates in cases of high levels of gene flow. The number of loci sampled (12, 24, or 96) has only a minor effect on the relative performance of the estimators under study. For all estimators there is a striking effect of the number of samples, with the differentiation estimates showing very odd distributions for two samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin-based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using one male-inherited, one female-inherited and eight biparentally inherited markers, we investigate the population genetic structure of the Valais shrew (Sorex antinorii) in the Swiss Alps. Bayesian analysis on autosomal microsatellites suggests a clear genetic differentiation between two groups of populations. This geographically based structure is consistent with two separate postglacial recolonization routes of the species into Switzerland from Italian refugia after the last Pleistocene glaciations. Sex-specific markers also confirm genetic structuring among western and eastern areas, since very few haplotypes for either Y chromosome or mtDNA genome are shared between the two regions. Overall, these results suggest that two already well-differentiated genetic lineages colonized the Swiss Alps and came into secondary contact in the Rhône Valley. Low level of admixture between the two lineages is likely explained by the mountainous landscape structure of lateral valleys orthogonal to the main Rhône valley.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected conflict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene flow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a five-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but significant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. For both types of colonies, there was very little genetic structuring above the level of the nest, with no sign of isolation by distance. These similarities in the breeding systems were associated with a complete lack of genetic differentiation between single- and multiple-queen colonies, which provides no support for the hypothesis that change in queen number leads to restricted gene flow between social forms. Overall, this study suggests that the higher rates of queen turnover, local mating, and population structuring that are often associated with multiple-queen colonies do not appear when single- and multiple-queen colonies still coexist within the same population, but build up over time in populations consisting mostly of multiple-queen colonies.