224 resultados para Microcystis novacekii
Resumo:
Microcystins are small hepatotoxic peptides produced by a number of cyanobacteria. They are synthesized non-ribosomally by multifunctional enzyme complex synthetases encoded by the mcy genes. Primers deduced from mcy genes were designed to discriminate between toxic microcystin-producing strains and non-toxic strains. Thus, PCR-mediated detection of mcy genes could be a simple and efficient means to identify potentially harmful genotypes among cyanobacterial populations in bodies of water. We surveyed the distribution of the mcyB gene in different Microcystis strains isolated from Chinese bodies of water and confirmed that PCR can be reliably used to identify toxic strains. By omitting any DNA purification steps, the modified PCR protocol can greatly simplify the process. Cyanobacterial cells enriched from cultures, field samples, or even sediment samples could be used in the PCR assay. This method proved sensitive enough to detect mcyB genes in samples with less than 2,000 Microcystis cells per ml. Its accuracy, specificity and applicability were confirmed by sequencing selected DNA amplicons, as well as by HPLC, ELISA and mouse bioassay as controls for toxin production of every strain used.
Resumo:
Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.
Resumo:
Enclosure experiments with three treatments (sediment addition, sediment + nitrogen enrichment, sediment + phosphorus enrichment) and unfertilized controls were performed in shallow hypereutrophic Lake Donghu during the summer of 2000. Dense Microcystis aeruginosa blooms occurred in all the enclosures during the experimental period but not in the surrounding lake water. Generally, the dominant rotifers were Polyarthra vulgalis, Filinia longiseta, Proales sp. and Asplanchna sp. at the beginning of the experiment, followed by a shift to Brachionus calyciflorus, Trichocerca similis, Cephalodella catellina and Anuraeopsis fissa, and finally to F. longiseta, Proales sp. and Keratella cochleris. M. aeruginosa blooms strongly suppressed the larger Diaphanosoma brachyurum but enhanced the development of the smaller cladocerans and rotifers that probably efficiently utilized organic matter from M. aeruginosa through the detritus food chain. The smaller cladoceran and rotifers coexisted successfully throughout the experimental period.
Resumo:
Gemstone Team BREATHE (Bay Revitalization Efforts Against the Hypoxic Environment)
Resumo:
The genetic and morphological variability among 15 Brazilian strains of Microcystis aeruginosa (Kütz.) Kütz. collected from four locations was examined and compared with several reference strains of M. aeruginosa, M. viridis (A. Br.) Lemm. and M. wesenbergii (Kom.) Kom. in Kondr. Brazilian strains were classified by morphological features and by comparison of the nucleotide sequences of the cpcBA intergenic spacer and flanking regions. Our results indicate that Brazilian strains classified as M. aeruginosa are phylogenetically diverse compared with reference strains of M. aeruginosa and that the current taxonomy underestimates genetic diversity within M. aeruginosa. The data also demonstrate that morphological criteria alone are inadequate to characterize Microcystis species. Although colonial characters were shown to vary considerably in culture, some genetic lineages demonstrated consistent cellular diameter ranges, indicating that cell size has value as a taxonomic character. The detection of six M. aeruginosa genotypes in a single water body indicates that morphological approaches can also seriously underestimate the diversity of Microcystis bloom populations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
The cyanobacterium Microcystis aeruginosa strain NPCD-1, isolated from sewage treatment plant and characterized as a non-microcystin producer by mass spectrometry and molecular analysis, was found to be a source of lipid when cultivated in ASM-1 medium at 25 degrees C under constant white fluorescent illumination (109 mu mol photon m(-2) s(-1)). In these conditions, biomass productivity of 46.92 +/- 3.84 mg L-1 day(-1) and lipid content of 28.10 +/- 1.47% were obtained. Quantitative analysis of fatty acid methyl esters demonstrated high concentration of saturated fatty acids (50%), palmitic (24.34%) and lauric (13.21%) acids being the major components. The remaining 50% constituting unsaturated fatty acids showed higher concentrations of oleic (26.88%) and linoleic (12.53%) acids. The feasibility to produce biodiesel from this cyanobacterial lipid was demonstrated by running enzymatic transesterification reactions catalyzed by Novozym (R) 435 and using palm oil as feedstock control. Batch experiments were carried out using tert-butanol and iso-octane as solvent. Results showed similarity on the main ethyl esters formed for both feedstocks. The highest ethyl ester concentration was related to palmitate and oleate esters followed by laurate and linoleate esters. However, both reaction rates and ester yields were dependent on the solvent tested. Total ethyl ester concentrations varied in the range of 44.24-67.84 wt%, corresponding to ester yields from 80 to 100%. Iso-octane provided better solubility and miscibility, with ester yield of 98.10% obtained at 48 h for reaction using the cyanobacterium lipid, while full conversion was achieved in 12 h for reaction carried out with palm oil. These results demonstrated that cyanobacterial lipids from M. aeruginosa NPCD-1 have interesting properties for biofuel production. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Species of Microcystis are the most common bloom-forming cyanobacteria in several countries. Despite extensive studies regarding the production of bioactive cyanopeptides in this genus, there are limited data on isolated strains from Brazil. Three Microcystis sp. strains were isolated from the Salto Grande Reservoir (LTPNA01, 08 and 09) and investigated for the presence of mcy genes, microcystins and other cyanopeptides. Microcystin and microginin production was confirmed in two isolates using high-resolution tandem mass spectrometry after electrospray ionization (ESI-Q-TOF), and the structures of two new microginin congeners were proposed (MG756 Ahda-Val-Leu-Hty-Tyr and MG770 MeAhda-Val-Leu-Hty-Tyr). The biosynthesis profile of the identified cyanopeptides was evaluated at different growth phases via a newly developed HPLC-UV method. Results demonstrated no substantial differences in the production of microcystins and microginins after data normalization to cell quota, suggesting a constitutive biosynthesis. This study represents the first confirmed co-production of microginins and microcystins in Brazilian strains of Microcystis sp. and highlights the potential of Brazilian cyanobacteria as a source of natural compounds with pharmaceutical interest.
Resumo:
The toxicity of cadmium and chromium to Pseudokirchneriella subcapitata and Microcystis aeruginosa was evaluated through algal growth rate during 96h exposure bioassays. Free metal ion concentrations were obtained using MINEQL(+) 4.61 and used for IC50 determination. Metal accumulations by the microorganisms were determined and they were found to be dependent on the concentration of Cd2+ and Cr6+. IC50 for P. subcapitata were 0.60 mu mol L-1 free Cd2+ and 20 mu mol L-1 free Cr6+, while the IC50 values for M. aeruginosa were 0.01 mu mol L-1 Cd2+ and 11.07 mu mol L-1 Cr6+. P. subcapitata accumulated higher metal concentrations (0.001 - 0.05 mu mol Cd mg(-1) dry wt. and 0.001 - 0.04 mu mol Cr mg(-1) dry wt) than the cyanobacteria (0.001 - 0.01 mu mol Cd mg(-1) dry wt and 0.001 - 0.02 mu mol Cr mg(-1) dry wt). Cadmium was more toxic than chromium to both the microorganisms.