991 resultados para Mice inbred BALB C
Resumo:
To investigate the functional role of different alpha1-adrenergic receptor (alpha1-AR) subtypes in vivo, we have applied a gene targeting approach to create a mouse model lacking the alpha1b-AR (alpha1b-/-). Reverse transcription-PCR and ligand binding studies were combined to elucidate the expression of the alpha1-AR subtypes in various tissues of alpha1b +/+ and -/- mice. Total alpha1-AR sites were decreased by 98% in liver, 74% in heart, and 42% in cerebral cortex of the alpha1b -/- as compared with +/+ mice. Because of the large decrease of alpha1-AR in the heart and the loss of the alpha1b-AR mRNA in the aorta of the alpha1b-/- mice, the in vivo blood pressure and in vitro aorta contractile responses to alpha1-agonists were investigated in alpha1b +/+ and -/- mice. Our findings provide strong evidence that the alpha1b-AR is a mediator of the blood pressure and the aorta contractile responses induced by alpha1 agonists. This was demonstrated by the finding that the mean arterial blood pressure response to phenylephrine was decreased by 45% in alpha1b -/- as compared with +/+ mice. In addition, phenylephrine-induced contractions of aortic rings also were decreased by 25% in alpha1b-/- mice. The alpha1b-AR knockout mouse model provides a potentially useful tool to elucidate the functional specificity of different alpha1-AR subtypes, to better understand the effects of adrenergic drugs, and to investigate the multiple mechanisms involved in the control of blood pressure.
Resumo:
Rotaviruses are the major cause of severe diarrhea in infants and young children worldwide. Due to their restricted site of replication, i.e., mature enterocytes, local intestinal antibodies have been proposed to play a major role in protective immunity. Whether secretory immunoglobulin A (IgA) antibodies alone can provide protection against rotavirus diarrhea has not been fully established. To address this question, a library of IgA monoclonal antibodies (MAbs) previously developed against different proteins of rhesus rotavirus was used. A murine hybridoma "backpack tumor" model was established to examine if a single MAb secreted onto mucosal surfaces via the normal epithelial transport pathway was capable of protecting mice against diarrhea upon oral challenge with rotavirus. Of several IgA and IgG MAbs directed against VP8 and VP6 of rotavirus, only IgA VP8 MAbs (four of four) were found to protect newborn mice from diarrhea. An IgG MAb recognizing the same epitope as one of the IgA MAbs tested failed to protect mice from diarrhea. We also investigated if antibodies could be transcytosed in a biologically active form from the basolateral domain to the apical domain through filter-grown Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. Only IgA antibodies with VP8 specificity (four of four) neutralized apically administered virus. The results support the hypothesis that secretory IgA antibodies play a major role in preventing rotavirus diarrhea. Furthermore, the results show that the in vivo and in vitro methods described are useful tools for exploring the mechanisms of viral mucosal immunity.
Resumo:
Rotavirus is the major cause of diarrhea among young infants in both humans and animals. Immune protection of newborns by vaccination is difficult to achieve since there is not enough time to mount an immune response before exposure to the virus. We have designed a vaccination strategy mediating transfer of neutralizing antibodies from the mother to the offspring during pregnancy and/or lactation. Adult female mice were nasally immunized with virus-like particles (VLPs) made of viral proteins VP2 and 6 (VLP2/6) or VP 2, 6, and 7 (VLP2/6/7) derived from the RF rotavirus strain in the presence or absence of cholera toxin. Both vaccines elicited serum and milk antibodies against the respective VPs. Four days after parturition, suckling pups were challenged orally with RF rotavirus. Pups from mothers immunized with VLP2/6/7 but not VLP2/6 were protected against rotavirus diarrhea, indicating that VP7 plays a key role in protection. Protection was mediated by milk rather than serum antibodies, and mucosal adjuvants were not required. In conclusion, VLPs containing VP7 administered nasally to mothers represent a promising vaccine candidate for the protection of suckling newborns against rotavirus-induced diarrhea, even in the absence of a mucosal adjuvant.
Resumo:
When endogenous mouse mammary tumor virus (MMTV) superantigens (SAg) are expressed in the first weeks of life an efficient thymic deletion of T cells expressing MMTV SAg-reactive T cell receptor (TcR) V beta segments is observed. As most inbred mouse strains and wild mice contain integrated MMTV DNA, knowing the precise extent of MMTV influence on T cell development is required in order to study T cell immunobiology in the mouse. In this report, backcross breeding between BALB.D2 (Mtv-6, -7, -8 and -9) and 38CH (Mtv-) mice was carried out to obtain animals either lacking endogenous MMTV or containing a single MMTV locus, i.e. Mtv-6, -7, -8 or -9. The TcR V beta chain (TcR V beta) usage in these mice was analyzed using monoclonal antibodies specific for TcR V beta 2, V beta 3, V beta 4, V beta 5, V beta 6, V beta 7, V beta 8, V beta 11, V beta 12 and V beta 14 segments. Both Mtv-8+ mice and Mtv-9+ mice deleted TcR V beta 5+ and V beta 11+ T cells. Moreover, we also observed the deletion of TcR V beta 12+ cells by Mtv-8 and Mtv-9 products. Mtv-6+ and Mtv-7+ animals deleted TcR V beta 3+ and V beta 5+ cells, and TcR V beta 6+, V beta 7+ and V beta 8.1+ cells, respectively. Unexpectedly, TcR V beta 8.2+ cells were also deleted in some backcross mice expressing Mtv-7. TcR V beta 8.2 reactivity to Mtv-7 was shown to be brought by the 38CH strain and to result from an amino acid substitution (Asn-->Asp) in position 19 on the TcR V beta 8.2 fragment. Reactivities of BALB.D2 TcR V beta 8.2 and 38CH TcR V beta 8.2 to the exogenous infectious viruses, MMTV(SW) and MMTV(SHN), were compared. Finally, the observation of increased frequencies of TcR V beta 2+, V beta 4+ and V beta 8+ CD4+ T cell subsets in Mtv-8+ and Mtv-9+ mice, and TcR V beta 4+ CD4+ T cells in Mtv-6+ and Mtv-7+ mice, when compared with the T cell repertoire of Mtv- mice, is consistent with the possibility that MMTV products contribute to positive selection of T cells.
Resumo:
The Mouse Mammary Tumor Virus (MMTV) long terminal repeat contains an open reading frame (orf) of 960 nucleotides encoding a 36 kDa polypeptide with a putative transmembrane domain and five N-glycosylation sites in the N-terminal part of the protein. Transgenic mice bearing either the complete or the 3' terminal half of the orf sequence of MMTV-GR under the control of the SV40 promoter were raised. As shown previously by FACS analysis transgenic mice which express the complete orf gene have a significant deletion of V beta 14 expressing T cells at 6 weeks of age. Here we show that no clonal deletion of V beta 14 bearing T cells takes place in transgenic mice that contain orf sequences from the fifth ATG to the termination codon. The pattern of tissues expressing the truncated transgene was studied by the Polymerase Chain Reaction (PCR) and was very similar to the one obtained in the V beta 14 deleting animals. These data suggest that the amino-terminal portion of the ORF protein (pORF) is required for a superantigen function, while our previous data indicated that determinants from the carboxy-terminus play an important role for TCR V beta specificity.
Resumo:
We investigated the immunogenicity and the conformational properties of the non-repetitive sequences of the Plasmodium falciparum circumsporozoite (CS) protein. Two polypeptides of 104 and 102 amino acids long, covering, respectively, the N- and C-terminal regions of the CS protein, were synthesized using solid phase Fmoc chemistry. The crude polypeptides were purified by a combination of size exclusion chromatography and RP-HPLC. Sera of mice immunized with the free polypeptides emulsified in incomplete Freund's adjuvant strongly reacted with the synthetic polypeptides as well as with native CS protein as judged by ELISA and IFAT assays. Most importantly, these antisera inhibited the sporozoite invasion of hepatoma cells. In addition, sera derived from donors living in a malaria endemic area recognized the CS 104- and 102-mers. Conformational studies of the CS polypeptides were also performed by circular dichroism spectroscopy showing the presence of a weakly ordered structure that can be increased by addition of trifluoroethanol. The obtained results indicate that the synthetic CS polypeptides and the natural CS protein share some common antigenic determinants and probably have similar conformation. The approach used in this study might be useful for the development of a synthetic malaria vaccine.
Resumo:
A murine monoclonal antibody (mAb) specific for apocytochrome c was found to be able to either inhibit or enhance the helper activity of mouse apocytochrome c-specific T cell clones and populations in a hapten (trinitrophenyl)-carrier (apocytochrome c) system of T-B cell cooperation. This effect of the mAb was carrier specific, could not be ascribed simply to a shift in the kinetics of the antibody response and was observed using apocytochrome c T helper cells of different mouse haplotypes. In addition, the anti-apocytochrome c mAb was able to inhibit specific T helper cell activity even when the T cells were triggered with antigen-presenting cells pulsed with antigen. Taken together, these results suggested that the mAb was inhibiting helper activity due to its ability to modify the interaction between T cells and antigen-presenting cells.
Resumo:
Mice with homologous disruption of the gene coding for the ligand-binding chain of the interferon (IFN) gamma receptor and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in the differentiation of functional CD4+ T cell subsets in vivo and resistance to infection. Wild-type 129/Sv/Ev mice are resistant to infection with this parasite, developing only small lesions, which resolve spontaneously within 6 wk. In contrast, mice lacking the IFN-gamma receptor develop large, progressing lesions. After infection, lymph nodes (LN) and spleens from both wild-type and knockout mice showed an expansion of CD4+ cells producing IFN-gamma as revealed by measuring IFN-gamma in supernatants of specifically stimulated CD4+ T cells, by enumerating IFN-gamma-producing T cells, and by Northern blot analysis of IFN-gamma transcripts. No biologically active interleukin (IL) 4 was detected in supernatants of in vitro-stimulated LN or spleen cells from infected wild-type or deficient mice. Reverse transcription polymerase chain reaction analysis with primers specific for IL-4 showed similar IL-4 message levels in LN from both types of mice. The IL-4 message levels observed were comparable to those found in similarly infected C57BL/6 mice and significantly lower than the levels found in BALB/c mice. Anti-IFN-gamma treatment of both types of mice failed to alter the pattern of cytokines produced after infection. These data show that even in the absence of IFN-gamma receptors, T helper cell (Th) 1-type responses still develop in genetically resistant mice with no evidence for the expansion of Th2 cells.
Resumo:
Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.
Resumo:
In this work we have demonstrated the effects of oral administration of Chlorella vulgaris (CV) on Natural Killer cells (NK) activity of mice infected with a sublethal dose of viable Listeria monocytogenes. The treatment with C. vulgaris produced a significant increase on NK cells activity in normal (non-infected) animals compared to the animals that received only vehicle (water) (p < 0.0001). Similarly, the infection alone produced a significant increase on NK cells activity, which was observed at 48 and 72 hours after the inoculation of L. monocytogenes. Moreover, when CV was administered in infected animals, there was an additional increase in NK cells activity which was significantly higher than that found in the infected groups (p < 0.0001) CV treatment (50 and 500mg/Kg) of mice infected with a dose of 3x105 bacteria/animal, which was lethal for all the non- treated controls, produced a dose-response protection which led to a 20% and 55% survival, respectively (p < 0.0001).
Resumo:
Th1 cells, in cooperation with activated macrophages, are required to overcome Yersinia enterocolitica infection in mice. The pathway macrophages utilize to metabolize arginine can alter the outcome of inflammation in different ways. The objective of this study was to verify the pattern of macrophages activation in Y. enterocolitica infection of BALB/c (Yersinia-susceptible) and C57BL/6 (Yersinia-resistant) mice. Both strains of mice were infected with Y. enterocolitica O:8 WA 2707. Peritoneal macrophages and spleen cells were obtained on the 1st, 3rd and 5th day post-infection. The iNOS and the arginase activities were assayed in supernatants of macrophage cultures, by measuring their NO/citrulline and ornithine products, respectively. TGFβ-1 production was also assayed. The Th1 and Th2 responses were evaluated in supernatants of lymphocyte cultures, by IFN-γ and IL-4 production. Our results showed that in the early phase of Y. enterocolitica infection (1st and 3rd day), the macrophages from C57BL/6 mice produced higher levels of NO/citrulline and lower levels of ornithine than macrophages from BALB/c mice. The infection with Y. enterocolitica leads to an increase in the TGF-β1 and IL-4 production by BALB/c mice and to an increase in the IFN-γ levels produced by C57BL/6 mice. These results suggest that Y. enterocolitica infection leads to the modulation of M1 macrophages in C57Bl/6 mice, and M2 macrophages in BALB/c mice. The predominant macrophage population (M1 or M2) at the 1st and 3rd day of infection thus seems to be important in determining Y. enterocolitica susceptibility or resistance.
Resumo:
Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
INTRODUCTION: Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. METHODS: The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. RESULTS: Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. CONCLUSION: We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.