985 resultados para Mexico. Armada.
Resumo:
Microcohorts of white shrimp, Litopenaeus vannamei, were sampled with a cast net at fortnightly intervals in the Mar Muerto Lagoon, Southern Mexico. Shrimp recruited to the lagoon throughout the sampling period (January to August 1993). Mean growth rates of microcohorts ranged from 0.21 to 1.21 mm total length (TL) per day. Juvenile shrimp mainly between the sizes of 70 to 80 mm TL emigrated from the lagoon. Growth and the onset of emigration appeared to be related to water salinity.
Resumo:
A description of the Cuban set longline fishery on Campeche Bank, Gulf of Mexico is given, with emphasis on the effects of different species of pelagic fishes used as bait. The target species is the red grouper Epinephelus morio, with incidental species consisting of other epinephelids (13%), lutjanids (5.4%) and sparids (1.6%).
Resumo:
The parameters a and b of the length-weight relationship of the form W=aL super(b) were estimated for 24 species of soft bottom demersal fishes caught on the continental shelf off Jalisco and Colima states, Mexico. The estimates of b ranged from 2.74 to 3.33. The mean of the b values is 3.02 with a standard deviation of 0.15.
Resumo:
The age and growth dynamics of the spinner shark (Carcharhinus brevipinna) in the northwest Atlantic Ocean off the southeast United States and in the Gulf of Mexico were examined and four growth models were used to examine variation in the ability to fit size-at-age data. The von Bertalanffy growth model, an alternative equation of the von Bertalanffy growth model with a size-at-birth intercept, the Gompertz growth model, and a logistic model were fitted to sex-specific observed size-at-age data. Considering the statistical criteria (e.g., lowest mean square error [MSE], high coefficient-of-determination, and greatest level of significance) we desired for this study, the logistic model provided the best overall fit to the size-at-age data, whereas the von Bertalanffy growth model gave the worst. For “biological validity,” the von Bertalanffy model for female sharks provided estimates similar to those reported in other studies. However, the von Bertalanffy model was deemed inappropriate for describing the growth of male spinner sharks because estimates of theoretical maximum size (L∞) indicated a size much larger than that observed in the field. However, the growth coefficient (k= 0.14/yr) from the Gompertz model provided an estimate most similar to that reported for other large coastal species. The analysis of growth for spinner shark in the present study demonstrates the importance of fitting alternative models when standard models fit the data poorly or when growth estimates do not appear to be realistic.
Feeding habits of the dwarf weakfish (Cynoscion nannus) off the coasts of Jalisco and Colima, Mexico
Resumo:
Sciaenids from the Pacific coast of Mexico are used as a second-class fish species for human consumption (Aguilar-Palomino et al., 1996). The dwarf weakfish (Cynoscion nannus) (Castro-Aguirre and Arvizu-Martínez, 1976) is often caught as bycatch in the shrimp fishery but, because of its small size (<27 cm TL, total length), it is not considered a valuable resource. This species can be found in great numbers in waters between 100 and 812 m (Allen and Robertson, 1994; Fischer et al., 1995) associated with the soft-bottom regions off the coast of Jalisco and Colima (González-Sansón et al., 1997).
Resumo:
Dosidicus gigas, the only species in the genus Dosidicus, is commonly known as the jumbo squid, jumbo flying squid (FAO, see Roper et al., 1984), or Humboldt squid. It is the largest ommastrephid squid and is endemic to the Eastern Pacific, ranging from northern California to southern Chile and to 140oW at the equator (Nesis, 1983; Nigmatullin, et al., 2001). During the last two decades it has become an extremely important fisheries resource in the Gulf of California (Ehrhardt et al., 1983; Morales-Bojórquez et al., 2001), around the Costa Rica Dome (Ichii et al., 2002) and off Peru (Taipe et al., 2001). It is also an active predator that undoubtedly has an important impact on local ecology in areas where it is abundant (Ehrhardt et al., 1983; Nesis, 1983; Nigmatullin et al., 2001; Markaida and Sosa-Nishizaki, 2003).
Resumo:
U.S. Gulf of Mexico, pink shrimp, Farfantepenaeus duorarum, catch statistics have been collected by NOAA’s National Marine Fisheries Service, or its predecessor agency, for over 50 years. Recent events, including hurricanes and oil spills within the ecosystem of the fishery, have shown that documentation of these catch data is of primary importance. Fishing effort for this stock has fluctuated over the 50-year period analyzed, ranging from 3,376 to 31,900 days fished, with the most recent years on record, 2008 and 2009, exhibiting declines up to 90% relative to the high levels recorded in the mid 1990’s. Our quantification of F. duorarum landings and catch rates (CPUE) indicates catch have been below the long-term average of about 12 million lb for all of the last 10 years on record. In contrast to catch and effort, catch rates have increased in recent years, with record CPUE levels measured in 2008 and 2009, of 1,340 and 1,144 lb per day fished, respectively. Our regression results revealed catch was dependent upon fishing effort (F=98.48df=1, 48, p<0.001, r2=0.67), (Catch=1,623,378 + (520) × (effort)). High CPUE’s measured indicate stocks were not in decline prior to 2009, despite the decline in catch. The decrease in catch is attributed in large part to low effort levels caused by economical and not biological or habitat related conditions. Future stock assessments using these baseline data will provide further insights and management advice concerning the Gulf of Mexic
Resumo:
In July 2006, a mandatory observer program was implemented to characterize the commercial reef fish fishery operating in the U.S. Gulf of Mexico. The primary gear types assessed included bottom longline and vertical line (bandit and handline). A total of 73,205 fish (183 taxa) were observed in the longline fishery. Most (66%) were red grouper, Epinephelus morio, and yellowedge grouper, E. flavolimbatus. In the vertical line fishery, 89,015 fish (178 taxa) were observed of which most (60%) were red snapper, Lutjanus campechanus, and vermilion snapper, Rhomboplites aurorubens. Based on surface observations of discarded under-sized target and unwanted species, the majority of fish were released alive; minimum assumed mortality was 23% for the vertical line and 24% for the bottom longline fishery. Of the individuals released alive in the longline fishery, 42% had visual signs of barotrauma stress (air bladder expansion/and or eyes protruding). In the vertical line fishery, 35% of the fish were released in a stressed state. Red grouper and red snapper size composition by depth and gear type were determined. Catch-per-unit-effort for dominant species in both fisheries, illustrated spatial differences in distribution between the eastern and western Gulf. Hot Spot Analyses for red grouper and red snapper identified areas with significant clustering of high or low CPUE values.
Resumo:
Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.
Resumo:
From 2002 through 2008, the Mississippi Laboratories of the NMFS Southeast Fisheries Science Center, NOAA, conducted fishery-independent bottom trawl surveys for continental shelf and outer-continental shelf deep-water fishes and invertebrates of the U.S. Gulf of Mexico (50–500 m bottom depths). Five-hundred and ninety species were captured at 797 bottom trawl locations. Standardized survey gear and randomly selected survey sites have facilitated development of a fishery-independent time series that characterizes species diversity, distributions, and catch per unit effort. The fishery-independent surveys provide synoptic descriptions of deep-water fauna potentially impacted by various anthropogenic factors.
Resumo:
The potential for growth overfishing in the white shrimp, Litopenaeus setiferus, fishery of the northern Gulf of Mexico appears to have been of limited concern to Federal or state shrimp management entities, following the cataclysmic drop in white shrimp abundance in the 1940’s. As expected from surplus production theory, a decrease in size of shrimp in the annual landings accompanies increasing fishing effort, and can eventually reduce the value of the landings. Growth overfishing can exacerbate such decline in value of the annual landings. We characterize trends in size-composition of annual landings and other annual fishery-dependent variables in this fishery to determine relationships between selected pairs of these variables and to determine whether growth overfishing occurred during 1960–2006. Signs of growth overfishing were equivocal. For example, as nominal fishing effort increased, the initially upward, decelerating trend in annual yield approached a local maximum in the 1980’s. However, an accelerating upward trend in yield followed as effort continued to increase. Yield then reached its highest point in the time series in 2006, as nominal fishing effort declined due to exogenous factors outside the control of shrimp fishery managers. The quadratic relationship between annual yield and nominal fishing effort exhibited a local maximum of 5.24(107) pounds (≈ MSY) at a nominal fishing effort level of 1.38(105) days fished. However, annual yield showed a continuous increase with decrease in size of shrimp in the landings. Annual inflation-adjusted ex-vessel value of the landings peaked in 1989, preceded by a peak in annual inflation-adjusted ex-vessel value per pound (i.e. price) in 1983. Changes in size composition of shrimp landings and their economic effects should be included among guidelines for future management of this white shrimp
Resumo:
There is no evidence that a commercial bay scallop fishery exists anywhere in the northwestern Gulf of Mexico. No data concerning scallop abundance or distribution was found for Alabama, Mississippi, and Louisiana. Texas is the only state west of Florida where bay scallop populations have been documented. These records come from a variety of literature sources and the fisheries-independent data collected by Texas Parks and Wildlife Department (1982–2005). Although common in the diet of prehistoric peoples living on the Texas coast, recent (last ~50 years) bay scallop population densities tend to be low and exhibit “boom–bust” cycles of about 10–15 years. The Laguna Madre, is the only place on the Texas coast where scallops are relatively abundant; this is likely due to extensive seagrasses cover (>70%) and salinities that typically exceed 35 psu. The lack of bay scallop fishery development in the northwestern Gulf of Mexico is probably due to variable but generally low densities of the species combined with a limited amount of suitable (i.e. seagrass
Resumo:
The bay scallop, Argopecten irradians amplicostatus, has been present in the coastal lagoons of northeastern Mexico from Laguna Madre, Tamaulipas, to Tuxpan, Veracruz. But now, usually scarce in all lagoons, the scallop is harvested sporadically by fishermen who wade and collect them by hand and with tongs. Some are eaten by the fishermen and some are sold. They bring the fishermen about 60 pesos (5.88US$)/kg. Only the adductor muscles are eaten; they are prepared in cocktails and in ceviche. Little evidence exists that this scallop species was used in the early Mexican cultures.
Resumo:
This is a broad historical overview of the bay scallop, Argopecten irradians, fishery on the East and Gulf Coasts of North America (Fig. 1). For a little over a century, from about the mid 1870’s to the mid 1980’s, bay scallops supported large commercial fisheries mainly in the U.S. states of Massachusetts, New York, and North Carolina and on smaller scales in the states in between and in western Florida. In these states, the annual harvests and dollar value of bay scallops were far smaller than those of the other important commercial mollusks, the eastern oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, but they were higher than those of softshell clams, Mya arenaria (Table 1). The fishery had considerable economic importance in the states’ coastal towns, because bay scallops are a high-value product and the fishery was active during the winter months when the economies in most towns were otherwise slow. The scallops also had cultural importance as a special food, an ornament owing to its pretty shell design, and an interesting biological component of
Resumo:
The Kemp’s ridley sea turtle, Lepidochelys kempi, was on the edge of extinction owing to a combination of intense egg harvesting and incidental capture in commercial fishing trawls. Results from a cooperative conservation strategy initiated in 1978 between Mexico and the United States to protect and restore the Kemp’s ridley turtle at the main nesting beach at Rancho Nuevo, Tamaulipas, Mexico are assessed. This strategy appears to be working as there are signs that the species is starting to make a recovery. Recovery indicators include: 1) increased numbers of nesting turtles, 2) increased numbers of 100+ turtle nesting aggregations (arribadas), 3) an expanding nesting season now extending from March to August, and 4) significant nighttime nesting since 2003. The population low point at Rancho Nuevo was in 1985 (706 nests) and the population began to significantly increase in 1997 (1,514 nests), growing to over 4,000 nests in 2004. The size and numbers of arribadas have increased each year since 1983 but have yet to exceed the 1,000+ mark; most arribadas are still 200–800+ turtles.