67 resultados para Metasomatism
Resumo:
Major and trace element profiles of clinopyroxene grains in oceanic gabbros from ODP Hole 735B have been investigated by a combined in situ analytical study with ion probe, and electron microprobe. In contrast to the homogeneous major element compositions, trace elements (REE, Y, Cr, Sr, and Zr) show continuous core to rim zoning profiles. The observed trace element systematics in clinopyroxene cannot be explained by a simple diffusive exchange between melts and gabbros along grain boundaries. A simultaneous modification of the melt composition is required to generate the zoning, although Rayleigh fractional crystallization modelling could mimic the general shape of the profiles. Simultaneous metasomatism between the cumulate crystal and the porous melt during crystal accumulation is the most likely process to explain the zoning. Deformation during solidification of the crystal mush could have caused squeezing out of the incompatible element enriched residual melts (interstitial liquid). Migration of the melt along grain boundaries might carry these melt out of the system. This process named as synkinematic differentiation or differentiation by deformation (Natland and Dick, 2001, doi:10.1016/S0377-0273(01)00211-6) may act as an important magma evolution mechanism in the oceanic crust, at least at slow-spreading ridges.
Resumo:
The Shoemaker impact structure, on the southern margin of the Palaeoproterozoic Earaheedy Basin, with an outer diameter of similar to30 km, consists of two well-defined concentric ring structures surrounding a granitoid basement uplift. The concentric structures, including a ring syncline and a ring anticline, formed in sedimentary rocks of the Earaheedy Group. In addition, aeromagnetic and geological field observations suggest that Shoemaker is a deeply eroded structure. The central 12 km-diameter uplift consists of fractured Archaean basement granitoids of syenitic composition (Teague Granite). Shock-metamorphic features include shatter cones in sedimentary rocks and planar deformation features in quartz crystals of the Teague Granite. Universal-stage analysis of 51 sets of planar deformation features in 18 quartz grains indicate dominance of sets parallel to omega (10 (1) over bar3}, but absence of sets parallel to pi (10 (1) over bar2}, implying peak shock pressures in the range of 10-20 GPa for the analysed sample. Geophysical characteristics of the structure include a -100 mus(-2) gravity anomaly coincident with the central uplift and positive circular trends in both magnetic and gravity correlating with the inner ring syncline and outer ring anticline. The Teague Granite is dominated by albite-quartz-K-feldspar with subordinate amounts of alkali pyroxene. The alkali-rich syenitic composition suggests it could either represent a member of the Late Archaean plutonic suite or the product of alkali metasomatism related to impact-generated hydrothermal activity. In places, the Teague Granite exhibits partial to pervasive silicification and contains hydrothermal minerals, including amphibole, garnet, sericite and prehnite. Recent isotopic age studies of the Teague Granite suggest an older age limit of ca 1300 Ma (Ar-Ar on K-feldspar) and a younger age limit of ca 568 Ma (K-Ar on illite-smectite). The significance of the K-Ar age of 568 Ma is not clear, and it might represent either hydrothermal activity triggered by impact-related energy or a possible resetting by tectonothermal events in the region.
Resumo:
Rare earth element (REE) plus yttrium (Y) patterns of modem seawater have characteristic features that can be used as chemical fingerprints. Reliable proxies for marine REE + Y chemistry have been demonstrated from a large geological time span, including Archaean banded iron formation (BIF), stromatolitic limestone, Phanerozoic reef carbonate and Holocene microbialite. Here we present new REE + Y data for two distinct suites of early Archaean (ca. 3.7-3.8 Ga) metamorphosed rocks from southern West Greenland, whose interrelationships, if any, have been much debated in recent literature. The first suite comprises mangetite-quartz BIF, magnetite-carbonate BIF and banded magnetite-rich quartz rock, mostly from the Isua Greenstone Belt (IGB). The REE + Y patterns, particularly diagnostic anomalies (Ce/Ce*, Pr/Pr*), are closely related to those of published seawater proxies. The second suite includes banded quartz-pyroxene-amphibole +/- garnet rocks with minor magnetite from the so-called Akilia Association enclaves (in early Archaean granitoid gneisses) of the coastal region, some 150 km southwest of the IGB. Rocks of this type from one much publicised and highly debated locality (the island of Akilia) have been identified by some workers [Nature 384 (1996) 55; Geochim. Cosmochim. Acta 61 (1997) 2475] as BIF-facies, and their C-13-depleted signature in trace graphite interpreted as a proxy for earliest life on Earth. However, REE + Y patterns of the Akilia Association suite (except for one probably genuine magnetite-rich BIF from Ugpik) are inconsistent with a seawater origin. We agree with published geological and geochemical (including REE) work [Science 296 (2002) 1448] that most of the analysed Akilia rocks are not chemical sediments, and that C-isotopes in such rocks therefore cannot be used as biological proxies. Application of the REE + Y discriminant for the above two rock suites has been facilitated in this study by the use of MC-ICP technique which yields a more complete and precise REE + Y spectrum than was available in many previous studies. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex P-T-t path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise P-T-t path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709-785 °C and P = 7.0-9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a). The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent-continent collision at the end of the Mesoproterozoic (M1; 1090-1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.