945 resultados para Metamaterial. Split Ring Resonators. Transverse Transmission Line method. Microstrip antennas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued also as thesis (M.S.) University of Illinois.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"November 1, 1965."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'electromagnetisme és una branca de la física que està en continu estudi. Fins a mitjans de la dècada dels 60 es pensava que, per a la propagació de les ones electromagnètiques fos possible, els medis propagatius havien de presentar una permitivitat dielèctrica i una permeabilitat magnètica simultàniament positives. No obstant, Victor G. Veselago va revolucionar la teoria electromagnètica amb la idea dels medis amb ε i μ negatives i va donar amb això origen als medis metamaterials. En el present treball s'estudiaran els principis físics en els que es fonamenten els metamaterials. Es veuran algunes de les seves característiques que els converteixen en medis exòtics i com aquestes poden ser utilitzades en el desenvolupament de dispositius amb prestacions difícils d'obtenir amb les tecnologies convencionals. A continuació s'aplicaran els conceptes tractats en el disseny d'un inversor d'impedàncies implementat mitjançant ressonadors en anells oberts complementaris. Aquest dispositiu, que presentarà un funcionament en banda dual, serà utilitzat en el posterior disseny d'un divisor de potencia. Finalment es realitzarà la implementació física del divisor de potencia dissenyat i es verificarà el seu correcte funcionament amb les mesures pertinents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the contact resistance of graphene devices was investigated because high contact resistance is detrimental to the performance of graphene field-effect transistors (GFET). Method for increasing so-called edge-contact area was applied in device fabrication process, as few nanometers thick Ni layer was used as a catalytic etchant during the annealing process. Finally, Ni was also used as a metal for contact. GFETs were fabricated using electron beam lithography using graphene fabricated by chemical vapor deposition (CVD). Critical part of the fabrication process was to preserve the high quality of the graphene channel while etching the graphene at contact areas with Ni during the annealing. This was achieved by optimizing the combination of temperature and gas flows. The structural properties of graphene were studied using scanning electron microscopy, scanning confocal μ-Raman spectroscopy and optical microscopy. Evaluation of electric transport properties including contact resistance was carried out by transmission line method and four-probe method. The lowest contact resistance found was about at 350 Ωμm. In addition, different methods to transfer CVD graphene synthesized on copper were studied. Typical method using PMMA as a supporting layer leaves some residues after its removal, thus effecting on the performance of a graphene devices. In a metal assisted transfer method, metal is used as an interfacial layer between PMMA and graphene. This allows more effective removal of PMMA. However, Raman spectra of graphene transferred by metal assisted method showed somewhat lower quality than the PMMA assisted method

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work consists in the development of a theoretical and numerical analysis for frequency selective surfaces (FSS) structures with conducting patch elements, such as rectangular patches, thin dipoles and cross dipoles, on anisotropic dielectric substrates. The analysis is developed for millimeter wave band applications. The analytical formulation is developed in the spectral domain, by using a rigorous technique known as equivalent transmission line method, or immitance approach. The numerical analysis is completed through the use of the Galerkin's technique in the Fourier transform domain, using entire-domain basis functions. In the last decades, several sophisticated analytical techniques have been developed for FSS structure applications. Within these applications, it can be emphasized the use of FSS structures on reflecting antennas and bandpass radomes. In the analysis, the scattered fields of the FSS geometry are related to the surface induced currents on the conducting patches. After the formulation of the scattering problem, the numerical solution is obtained by using the moment method. The choice of the basis functions plays a very important role in the numerical efficiency of the numerical method, once they should provide a very good approximation to the real current distributions on the FSS analyzed structure. Thereafter, the dyadic Green's function components are obtained in order to evaluate the basis functions unknown coefficients. To accomplish that, the Galerkin's numerical technique is used. Completing the formulation, the incident fields are determined through the incident potential, and as a consequence the FSS transmission and reflection characteristics are determined, as function of the resonant frequency and structural parameters. The main objective of this work was to analyze FSS structures with conducting patch elements, such as thin dipoles, cross dipoles and rectangular patches, on anisotropic dielectric substrates, for high frequency applications. Therefore, numerical results for the FSS structure main characteristics were obtained in the millimeter wave bando Some of these FSS characteristics are the resonant

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of flexible materials for the development of planar circuits is one of the most desired and studied characteristics, lately, by researchers. This happens because the flexibility of the substrate can provide previously impracticable applications, due to the rigidity of the substrates normally used that makes it difficult to fit into the circuits in irregular surfaces. The constant interest in recent years for more lighter devices, increasingly more compacts, flexible and with low cost, led to a new line of research of great interest from both academic and technological views, that is the study and development of textile substrates that can be applied in the development of planar circuits, for applications in the areas of security, biomedical and telecommunications. This paper proposes the development of planar circuits, such as antennas , frequency selective surfaces (FSS) and planar filters, using textile (cotton ticking, jeans and brim santista) as the dielectric substrate and the Pure Copper Polyester Taffeta Fabric, a textile of pure copper, highly conductive, lightweight and flexible, commercially sold as a conductive material. The electrical characteristics of textiles (electric permittivity and loss tangent) were characterized using the transmission line method (rectangular waveguide) and compared with those found in the literature. The structures were analyzed using commercial software Ansoft Designer and Ansoft HFSS, both from the company Ansys and for comparison we used the Iterative Method of Waves (WCIP). For the purpose of validation were built and measured several prototypes of antennas, planar filters and FSS, being possible to confirm an excellent agreement between simulated and measured results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the transmission line method is explored on the study of the propagation phenomenon in nonhomogeneous walls with finite thickness. It is evaluated the efficiency and applicability of the method, considering materials like gypsum, wood and brick, found in the composition of the structures of walls in question. The results obtained in this work are compared to those available in the literature, for several particular cases. A good agreement is observed, showing that the performed analysis is accurate and efficient in modeling, for instance, the wave propagation through building walls and integrated circuit layers in mobile communication and radar system applications. Later, simulations of resistive sheets devices such as Salisbury screens and Jaumann absorbers and of transmission lines made of metal-insulator-semiconductor (MIS) are made. Thereafter, it is described a study on frequency surface selective structures (FSS). It is proposed the development of devices and microwave integrated circuits (MIC) of such structures, for the accomplishment of experiments. Finally, future works are suggested, for instance, on the development of reflectarrays, frequency selective surfaces with dissimilar elements, and coupled frequency selective surfaces with elements located on different layers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters