986 resultados para Metallic glass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherical nano-indentations of Cu46Zr54 bulk metallic glass (BMG) model systems were performed using molecular dynamics (MD) computer simulations, focusing specifically on the physical origin of serrated plastic flow. The results demonstrate that there is a direct correlation between macroscopic flow serration and underlying irreversible rearrangement of atoms, which is strongly dependent on the loading (strain) rate and the temperature. The serrated plastic flow is, therefore, determined by the magnitude of such irreversible rearrangement that is inhomogeneous temporally. A dimensionless Deborah number is introduced to characterize the effects of strain rate and temperature on serrations. Our simulations are shown to compare favorably with the available experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an intriguing observation that the interaction of brittle nanoscale periodic corrugations (NPCs) can lead to the formation of ductile dimples on the dynamic fracture surface of a tough Vit 1 bulk metallic glass (BMG) under high-velocity plate impact. A “beat” phenomenon due to superposition of simple harmonic vibrations, approximately characterizing NPCs, is proposed to explain this unusual brittle-to-ductile transition. The present results agree well with our previously revealed energy dissipation mechanism in the fracture of BMGs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zr-based bulk metallic glass matrix composites with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.(5) were synthesized by the copper-mould suction casting and the Bridgman solidification. The composite, containing a well-developed flowery beta-Zr dendritic phase, was obtained by the Bridgman solidification with the withdrawal velocity of 0.8 mm/s and the temperature gradient of 45 K/mm, and the ultimate strength of 2050 MPa and fracture plastic strain of 14.6% of the composite were achieved, which was mainly interpreted by the homogeneous dispersion of bcc beta-Zr phase in the glass matrix. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the nanoscale periodic corrugation (NPC) structures on the dynamic fracture surface of a typical tough bulk metallic glass, submitted to high-velocity plate impact and scanned by atomic force microscopy (AFM). The detrended fluctuation analysis (DFA) of the recorded AFM profiles reveals that the valley landscapes of the NPC are nearly memoryless, characterized by Hurst parameter of 0.52 and exhibiting a self-similar fractal character with the dimension of about 1.48. Our findings confirm the existence of the “quasi-cleavage” fracture underpinned by tension transformation zones (TTZs) in metallic glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new criterion for shear band formation in metallic glasses is proposed based on the shear plane criterion proposed by Packard and Schuh [1]. This modified shear plane (MSP) criterion suggests that a shear band is not initiated randomly throughout the entire material under stress but is initiated at the physical boundaries or defects and at locations where the highest normal stress modified maximum shear stress occurs. Moreover, the same as in the shear plan criterion, the shear stress all over the shear band should exceed the shear yield strength of the material. For a complete shear band to form, both requirements need to be fulfilled. The shear yield strength of the material is represented by the shear stress of the point at which the shear band stops. The new criterion agrees very well with experimental results in both the determination of the shear yield strength and the shear band path. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report for the first time the spontaneous formation of Zr-based metallic glass nanofilms by developed dynamic forced-shear-rupture technique of hat-shaped specimens. The obtained nanofilms have about 100 nm thickness and other two geometrical dimensions can reach micrometer scales. Their glassy nature and structural stability were solidly identified. It was found that electrons with the wavelength of less than 0.165 Å could make the metallic glass nanofilms transparent. Furthermore, it is clearly shown that shearbanding instability still afflicts such 100-nm-thick metallic glass nanofilms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic planar compressive experiments on a typical tough Zr-BMG (Bulk Metallic Glass) were carried out under impact velocity of 500-600 m/sec and strain rate of 10(6)/s. The fracture surface of samples exhibits different fracture patterns at different parts of the sample. At a corner close to the front loading boundary, fracture patterns from the free edge toward the centre changed from equiaxial veins in microscale to periodic corrugations in nanoscale; in the middle of the sample, the fracture surface contains glazed zones laid out orderly along the same boundary. FEM simulation was performed to investigate the stress distributions in the impacted sample under a short duration impact loading. It has revealed that the fracture patterns changing from the free edge toward the centre were resulted from the fracture modes' changing from the tensile dominant fracture to the shear dominant fracture. Whereas at the middle part of the sample, fracture initiated from several parallel shear bands propagating close to the same boundary is due to a large strain or much higher shear stress in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti40Cu40Ni10Zr10-xScx (x = 0.5 and 1, at%) alloys were prepared by copper mould casting method. Microstructures of the phi 3 mm rod alloys were investigated by XRD and SEM. The results showed that the phi 3 mm rods were glassy matrix with TiCu crystalline phase. Mechanical properties were studied by compressive test. Ti40Cu40Ni10Zr9Sc1 alloy exhibited good compressive strength over 2200 MPa and superior compressive deformation is about 7.9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au9+ beam with fluences ranging from 3 1011 to 3 1013 ions/cm2. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic properties of amorphous Fe–Ni–B based metallic glass nanostructures were investigated. The nanostructures underwent a spin-glass transition at temperatures below 100 K and revealed an irreversible temperature following the linear de Almeida–Thouless dependence. When the nanostructures were cooled below 25 K in a magnetic field, they exhibited an exchange bias effect with enhanced coercivity. The observed onset of exchange bias is associated with the coexistence of the spin-glass phase along with the appearance of another spin-glass phase formed by oxidation of the structurally disordered surface layer, displaying a distinct training effect and cooling field dependence. The latter showed a maximum in exchange bias field and coercivity, which is probably due to competing multiple equivalent spin configurations at the boundary between the two spin-glass phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra thin films based on CoFe were prepared from a composite target employing thermal evaporation. The microstructure of the films was modified by thermal annealing. The relationship between microstructure and magnetic properties of the films was investigated using techniques like glancing angle X-ray diffraction (GXRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The GXRD and TEM investigations showed an onset of crystallization of CoFe at around 373 K. The magnetic softness of the films improved with thermal annealing but at higher annealing temperature it is found to be deteriorating. Annealing inducedmodification of surface morphology of the alloy thin filmswas probed by atomic force microscopy (AFM). Surface smoothening was observed with thermal annealing and the observed magnetic properties correlate well with surface modifications induced by thermal annealing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lattice dynamical studies of the metallic glass Ca70Mg30 by Bhatia and Singh on their model contained two shortcomings, firstly the electron-ion interaction matrix was wrong and secondly, the numerical value of the bulk modulus of the electron gas was accepted arbitrarily. By modifying the electron-ion dynamical matrix and determining all the model parameters from the experimental data, we made a fresh study of the lattice dynamics of Ca70Mg30 and compared it to the earlier studies of Bhatia and Singh and also with experimental phonons.