149 resultados para Messengers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente pesquisa investiga o Currículo e seus significados para os sujeitos de uma escola ribeirinha, multisseriada no município de Cametá - Pará, no qual se objetivou analisar como se define e materializa-se o currículo na escola multisseriada ribeirinha, identificando quais significados são atribuídos ao currículo escolar pelos alunos, pais, comunitários e a professora. Esse estudo se desenvolveu na Ilha Joroca, na localidade Jorocazinho de Baixo, uma comunidade com uma base organizacional relevante, que tem despertado curiosidade cientifica em outras áreas; foi beneficiada com vários projetos do governo federal e possuí quatro escolas em seu entorno. A investigação ocorreu na Escola Municipal de Ensino Fundamental Jorocazinho, onde se buscou conhecer inicialmente o contexto da comunidade ribeirinha no campo das organizações e suas práticas educativas observando quais experiências de currículo perpassam esse cenário e, em seguida priorizou-se compreender a materialização do currículo e seus significados na voz dos sujeitos da escola. Nesse sentido, os educandos, pais, comunitários e a professora foram os principais interlocutores da pesquisa e suas narrativas destacaram-se como objeto de estudo e análise. Os aportes teóricos utilizados para análise dos depoimentos coletados pautaram-se nos estudos de Apple, Arroyo, Vygotsky, Freire, Vasconcelos e Cagliari. Os dois primeiros autores se incluem no texto relacionando-se aos depoimentos dos sujeitos ribeirinhos ao currículo e sua materialização, enquanto os demais serviram de base, para a análise das falas referentes aos significados do currículo. O estudo, as análises focaram os seguintes eixos temáticos: A materialização do currículo na escola multisseriada ribeirinha; O currículo e seus significados para as lideranças comunitárias, pais de alunos e a professora; O significado do currículo escolar para os educandos; O significado do “aprender a ler” para educandos ribeirinhos. Essa discussão fundamenta-se numa abordagem qualitativa, e se desenvolveu através de uma pesquisa exploratória seguida da observação participante. Empregaram-se como procedimentos técnicos metodológicos: entrevistas narrativas e semi - estruturada, a análise documental do planejamento curricular da escola, do livro didático utilizado para leitura dos educandos em sala de aula; de imagens fotográficas e de desenhos dos estudantes. Como resultado, identificamos que a escola ribeirinha multisseriada necessita de mais atenção do governo municipal e os educadores de melhor acompanhamento e orientação em suas práticas educativas; as práticas de alfabetização devem assumir como dimensão prioritária nas séries iniciais do ensino fundamental; Existe um descaso em relação às questões de: infra-estrutura, didático/pedagógico e financeira; as políticas públicas de educação do município para a escola ribeirinha é precarizada; o que se tem enquanto currículos na escola multisseriada, são: uma “listagem de conteúdos” descontextualizados e a forma de organização da educação ribeirinha é fundamentalmente “urbanocêntrica”. Indica-se, portanto que, a educação ribeirinha precisa ser valorizada enquanto espaço de construção do conhecimento, a partir da valorização dos saberes culturais ribeirinhos, despertando-os para uma leitura de mundo e para construção de novos sujeitos políticos e sociais sintonizados com a sua territorialidade e identidade cultural.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho, propõe-se uma melhoria na estratégia de escalonamento baseada em pesos das classes de tráfego em redes óticas passivas Ethernet – EPON, de modo a não penalizar demasiadamente a classe tipo melhor esforço (BE). Como suporte, desenvolveu-se um modelo híbrido analítico/simulado para análise de desempenho do fluxo de subida, baseado no atraso total de quadros. A modelagem foi feita utilizando Redes de Petri Coloridas Estocásticas (Stochastic Colored Petri Nets - SCPN) da qual se obtém, por simulação, o tamanho médio da fila que posteriormente é usado para, analiticamente, obter-se o atraso total. Não obstante ao crescimento de aplicações multimídia em tempo real, no ano de 2010, o tráfego tradicional na Internet (navegação web, email, mensagens instantâneas) classificado como melhor esforço ainda foi responsável, sozinho (excluindo transferência de arquivos P2P), por valores em torno de 18% do tráfego na Internet. Somando-se a este percentual as aplicações P2P, que também não são essencialmente sensíveis ao atraso, têm-se uma participação de 58% (o tráfego P2P foi no ano de 2010 responsável por aproximadamente 40% do volume total de informações trafegadas na Internet). Mesmo em previsões feitas para o ano de 2014 o tráfego BE ainda representará aproximadamente 40% do volume total de dados a serem trafegados nas redes IPs mundiais. Estes números demonstram que a preocupação com este tipo de tráfego não pode ser relegada a uma importância secundária em detrimento às aplicações que exigem maior qualidade de serviço. Tomando como base o escalonamento IPACT (Interleaved Polling with Adapting Cycle Time) esta dissertação demonstra que é possível, através da melhoria proposta, obter atrasos menores no tráfego de melhor esforço, sem que as classes de tráfego prioritárias ultrapassem as especificações de atraso recomendadas para cada uma destas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Phospholipase Cb1 (PLC-β1) is a key player in the regulation of nuclear inositol lipid signaling and of a wide range of cellular functions, such as proliferation and differentiation (1,2,3). PLCb1 signaling depends on the cleavage of phosphatidylinositol 4,5-bisphosphate and the formation of the second messengers diacylglycerol and Inositol tris-phosphate which activate canonical protein kinase C (cPKC) isoforms. Here we describe a proteomic approach to find out a potential effector of nuclear PLC-b1 dependent signaling during insulin stimulated myogenic differentiation. Methods Nuclear lysates obtained from insulin induced C2C12 myoblasts were immunoprecipitated with anti-phospho-substrate cPKC antibody. Proteins, stained with Comassie blue, were excised, digested and subsequently analysed in LC-MS/MS. For peptide sequence searching, the mass spectra were processed and analyzed using the Mascot MS/MS ion search program with the NCBI database. Western blotting, GST-pull down and co-immunoprecipitation were performed to study the interaction between eEF1A2 and cPKCs. Site direct mutagenesis was performed to confirm the phosphorylated motif recognized by the antibody. Immunofluorescence analysis, GFP-tagged eEF1A2 vector and subcellular fractionation were performed to study nuclear localization and relative distribution of eEF1A2. Results We have previously shown that PLC-β1 is greatly increased at the nuclear level during insulin-induced myoblasts differentiation and that this nuclear localization is essential for induction of differentiation. Thus, nuclear proteins of insulin stimulated C2C12 myoblasts, were immunoprecipitated with an anti-phospho-substrate cPKC antibody. After Electrophoretic gel separation of proteins immunoprecipitated, several molecules were identified by LC-MS/MS. Among these most relevant and unexpected was eukaryotic elongation factor 1 alpha 2 (eEF1A2). We found that eEF1A2 is phosphorylated by PKCb1 and that these two molecules coimmunolocalized at the nucleolar level. eEF1A2 could be phosphorylated in many sites among which both threonine and serine residues. By site direct mutagenesis we demonstrated that it is the serine residue of the motif recognized by the antibody that is specifically phosphorylated by PKCb1. The silencing of PLCb1 gives rise to a reduction of expression and phosphorylation levels of eEF1A2 indicating this molecule as a target of nuclear PLCb1 regulatory network during myoblasts differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and aims of the research Nitric oxide (NO) and endocannabinoids (eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in many brain areas (including hippocampus and neocortex), as well as in learning and memory processes. NO is synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP production. The main target of cGMP is the cGMP-dependent protein kinase (PKG). Activity-dependent release of eCBs in the CNS leads to the activation of the Gαi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex of the temporal lobe, critically involved in visual recognition memory. LTD is proposed to be the cellular correlate underlying this form of memory. Cholinergic neurotransmission has been shown to play a critical role in both visual recognition memory and LTD in Prh. Moreover, visual recognition memory is one of the main cognitive functions impaired in the early stages of Alzheimer’s disease. The main aim of my research was to investigate the role of NO and ECBs in synaptic plasticity in rat Prh and in visual recognition memory. Part of this research was dedicated to the study of synaptic transmission and plasticity in a murine model (Tg2576) of Alzheimer’s disease. Methods Field potential recordings. Extracellular field potential recordings were carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile (p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz (10 min), or via bath application of carbachol (Cch; 50 μM) for 10 min. LTP was induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate controls. Behavioural experiments. The spontaneous novel object exploration task was performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or vehicle (saline) were directly infused into the Prh 15 min before training to verify the role of nNOS and CB1 in visual recognition memory acquisition. Object recognition memory was tested at 20 min and 24h after the end of the training phase. Results Electrophysiological experiments in Prh slices from juvenile rats showed that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not appear to be involved in LTP in this preparation. Furthermore, I found that eCBs are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS impairs rat visual recognition memory tested at 24 hours, but not at 20 min; however, the blockade of CB1 did not affect visual recognition memory acquisition tested at both time points specified. In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-LTD were observed compared to littermate controls. Conclusions The results obtained in Prh slices from juvenile rats indicate that NO and CB1 play a role in the induction of LTD and LTP, respectively. These results are confirmed by the observation that nNOS, but not CB1, is involved in visual recognition memory acquisition. The preliminary results obtained in the murine model of Alzheimer’s disease indicate that deficits in synaptic transmission and plasticity occur very early in Prh; further investigations are required to characterize the molecular mechanisms underlying these deficits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In den letzten Jahren gewann die Erforschung des Sphingolipidstoffwechsels in den verschiedensten Zellsystemen immer mehr an Bedeutung, da es sich zeigte, dass einige Sphingolipidspezies, vor allem Ceramid und Sphingosin-1-Phosphat, als wichtige intra- und extrazelluläre Botenstoffe wirken und bei einer Vielzahl unterschiedlicher zellulärer Antworten, wie Apoptose, Proliferation und Migration, eine wichtige Rolle spielen. Während Ceramid eher pro-apoptotisch und wachstumshemmend wirkt, begünstigt Sphingosin-1-Phosphat als „Gegenspieler“ eher die Proliferation und das Zellwachstum. Ceramid kann relativ schnell in Sphingosin-1-Phosphat umgewandelt werden durch die Wirkung zweier Enzymklassen, den Ceramidasen und den Sphingosinkinasen. Konsequenterweise ist die Regulation dieser Enzyme von entscheidender Bedeutung für das zelluläre Gleichgewicht zwischen Ceramid und Sphingosin-1-Phosphat. Im Rahmen dieser Dissertation wurde die Wirkung von extrazellulären Nukleotiden, die ebenfalls als Regulatoren zahlreicher zellulärer Antworten, wie z.B. Proliferation und Migration, bekannt sind und über entsprechende Oberflächenrezeptoren, die Purinrezeptoren, wirken, auf die Aktivität besonders der Sphingosinkinasen 1 und 2 näher untersucht. Es sollte geklärt werden, ob die Sphingosinkinasen an einigen durch extrazelluläre Nukleotide induzierbaren zellulären Antworten, in diesem Falle der Migration und der Proliferation von Zellen, beteiligt sind. Als Zellsystem wurden Nierenmesangiumzellen verwendet, da diese Zellen bei verschiedenen entzündlichen Nierenerkrankungen (Glomerulonephritiden) eine wichtige Rolle spielen. Es konnte in dieser Arbeit gezeigt werden, dass extrazelluläre Nukleotide die Aktivität der Sphingosinkinase 1 in den Mesangiumzellen stimulieren können. Zu beobachten ist dabei eine biphasische Aktivitätssteigerung der Sphingosinkinase 1. Die erste Aktivitätssteigerung nach einer Kurzzeitstimulation ist dabei auf eine Phosphorylierung des Enzyms zurückzuführen, während die zweite Aktivitätssteigerung mit einer Aktivierung des Sphingosinkinase 1-Promotors, einer verstärkten mRNA-Expression und einer de novo Proteinsynthese zu erklären ist. Diese Induktion kann durch die Verwendung von Hemmstoffen des PKC- und MAPK-Signalweges, sowie durch Verwendung eines Transkriptions- (Actinomycin D) oder eines Translationsinhibitors (Cycloheximid) blockiert werden. Die Halbwertszeit der mRNA der Sphingosinkinase 1 in den Mesangiumzellen konnte auf ca. 20 Minuten bestimmt werden. Im Gegensatz dazu ist die Sphingosinkinase 2 nicht durch ATP aktivierbar, wohl aber durch diverse Abbauprodukte von ATP, wie AMP und Adenosin, sowie durch UTP und seine Abbauprodukten UDP und UMP. Die neutrale Ceramidase kann nicht durch ATP und UTP aktiviert werden, wohl aber durch P2X7-Rezeptoragonisten (Bz-ATP, αβ-Me-ATP, γS-ATP) und TPA. In einem zweiten Schritt wurde die Rolle der Sphingosinkinasen und der neutralen Ceramidase bei der durch extrazelluläre Nukleotide induzierten Migration und Proliferation untersucht. Es zeigte sich mit Hilfe von genspezifischer siRNA zur Depletion der Sphingosinkinasen und der neutralen Ceramidase, sowie durch Verwendung von Kinase-Hemmstoffen und damit einhergehend der Inhibierung der Signalwege und mit Hilfe von verschiedenen Zelllinien isoliert aus Wildtyp-, SPHK 1-überexprimierenden und mSPHK1-defizienten Mäusen, dass die Aktivierung der Sphingosinkinase 1 durch extrazelluläre Nukleotide von entscheidender Bedeutung für die Migrationsfähigkeit der Zellen ist, jedoch keinen signifikanten Einfluss auf die Proliferationsrate der Mesangiumzellen hat. Auch die Aktivität der neutralen Ceramidase ist von entscheidender Bedeutung für die Migrationsfähigkeit der Zellen. Durch Depletion der neutralen Ceramidase scheint Ceramid in den Zellen zu akkumulieren, was die Proliferationsrate reduziert. Für die Proliferation der Mesangiumzellen könnte die Sphingosinkinase 2 als negativer Regulator fungieren, wie die Experimente mit der genspezifischen siRNA unter UTP-Stimulation gezeigt haben. Für die Migration der Mesangiumzellen gilt darüber hinaus, dass auch das Produkt der Sphingosinkinase 1, Sphingosin-1-Phosphat, in der Lage ist, die Migration zu stimulieren. Im Gegensatz dazu spielt Sphingosin-1-Phosphat für die Induktion der Proliferation der hier verwendeten Zellen keine wesentliche Rolle. Zusammenfassend zeigen die Daten, dass die Sphingosinkinase 1 und vorgeschaltet auch die neutrale Ceramidase bei der Migration von Mesangiumzellen eine zentrale Rolle spielen und damit als therapeutische Angriffspunkte bei der Behandlung von Krankheiten, die durch eine vermehrte Migration gekennzeichnet sind, in Frage kommen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the years, several studies reported the involvement of nuclear lipid signalling as highly connected with cell cycle progression. Indeed, nuclear Phosphatidylinositol-4,5-Biphosphate (PIP2) hydrolisis mediated by Phospholipases C (PLC), which leads to production of the second messengers Diacylglycerol (DAG) and Inositol-1,4,5-Triphosphate (IP3), is a fundamental event for both G1/S and G2/M checkpoints. In particular, we found that nuclear DAG production was mediated by PLCbeta1, enzyme mainly localized in the nucleus of K562 human erythroleukemia cells. This event triggered the activation and nuclear translocation of PKCalpha, which, in turn, resulted able to affect cell cycle via modulation of Cyclin D3 and Cyclin B1, two important enzymes for G1/S transition and G2/M progression respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photochemical uncaging of bio-active molecules was introduced in 1977, but since then, there has been no substantial improvement in the properties of generic caging chromophores. We have developed a new chromophore, nitrodibenzofuran (NDBF) for ultra-efficient uncaging of second messengers inside cells. Photolysis of a NDBF derivative of EGTA (caged calcium) is about 16-160 times more efficient than photolysis of the most widely used caged compounds (the quantum yield of photolysis is 0.7 and the extinction coefficient is 18,400 M(-1) cm(-1)). Ultraviolet (UV)-laser photolysis of NDBF-EGTA:Ca(2+) rapidly released Ca(2+) (rate of 20,000 s(-1)) and initiated contraction of skinned guinea pig cardiac muscle. NDBF-EGTA has a two-photon cross-section of approximately 0.6 GM and two-photon photolysis induced localized Ca(2+)-induced Ca(2+) release from the sarcoplasmic recticulum of intact cardiac myocytes. Thus, the NDBF chromophore has great promise as a generic and photochemically efficient protecting group for both one- and two-photon uncaging in living cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exosomes are small natural membrane vesicles released by a wide variety of cell types into the extracellular compartment by exocytosis. The biological functions of exosomes are only slowly unveiled, but it is clear that they serve to remove unnecessary cellular proteins (e.g., during reticulocyte maturation) and act as intercellular messengers because they fuse easily with the membranes of neighboring cells, delivering membrane and cytoplasmic proteins from one cell to another. Recent findings suggests that cell-derived vesicles (exosomes are also named membranous vesicles or microvesicles) could also induce immune tolerance, suppression of natural killer cell function, T cell apoptosis, or metastasis. For example, by secreting exosomes, tumors may be able to accomplish the loss of those antigens that may be immunogenic and capable of signaling to immune cells as well as inducing dysfunction or death of immune effector cells. On the other hand, dendritic cell-derived exosomes have the potential to be an attractive powerful immunotherapeutic tool combining the antitumor activity of dendritic cells with the advantages of a cell-free vehicle. Although the full understanding of the significance of exosomes requires additional studies, these membrane vesicles could become a new important component in orchestrating responses between cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the "annexin core", which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.