897 resultados para Melanoma, mutation, FGFR2, mislocalization, loss of function
Resumo:
During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of insulin-like growth factor I (IGF-I) in differentiated muscle fibers. We demonstrate that the IGF-I expression promotes an average increase of 15% in muscle mass and a 14% increase in strength in young adult mice, and remarkably, prevents aging-related muscle changes in old adult mice, resulting in a 27% increase in strength as compared with uninjected old muscles. Muscle mass and fiber type distributions were maintained at levels similar to those in young adults. We propose that these effects are primarily due to stimulation of muscle regeneration via the activation of satellite cells by IGF-I. This supports the hypothesis that the primary cause of aging-related impairment of muscle function is a cumulative failure to repair damage sustained during muscle utilization. Our results suggest that gene transfer of IGF-I into muscle could form the basis of a human gene therapy for preventing the loss of muscle function associated with aging and may be of benefit in diseases where the rate of damage to skeletal muscle is accelerated.
Resumo:
Biochemical and genetic studies have implicated α-gustducin as a key component in the transduction of both bitter or sweet taste. Yet, α-gustducin-null mice are not completely unresponsive to bitter or sweet compounds. To gain insights into how gustducin mediates responses to bitter and sweet compounds, and to elicit the nature of the gustducin-independent pathways, we generated a dominant-negative form of α-gustducin and expressed it as a transgene from the α-gustducin promoter in both wild-type and α-gustducin-null mice. A single mutation, G352P, introduced into the C-terminal region of α-gustducin critical for receptor interaction rendered the mutant protein unresponsive to activation by taste receptor, but left its other functions intact. In control experiments, expression of wild-type α-gustducin as a transgene in α-gustducin-null mice fully restored responsiveness to bitter and sweet compounds, formally proving that the targeted deletion of the α-gustducin gene caused the taste deficits of the null mice. In contrast, transgenic expression of the G352P mutant did not restore responsiveness of the null mice to either bitter or sweet compounds. Furthermore, in the wild-type background, the mutant transgene inhibited endogenous α-gustducin's interactions with taste receptors, i.e., it acted as a dominant-negative. That the mutant transgene further diminished the residual bitter and sweet taste responsiveness of the α-gustducin-null mice suggests that other guanine nucleotide-binding regulatory proteins expressed in the α-gustducin lineage of taste cells mediate these responses.
Resumo:
We have screened a collection of transposable-element-induced mutations for those which dominantly modify the extra R7 phenotype of a hypomorphic yan mutation. The members of one of the identified complementation groups correspond to disruptions of the tramtrack (ttk) gene. As heterozygotes, ttk alleles increase the percentage of R7 cells in yan mutant eyes. Just as yan mutations increase ectopic R7 cell formation, homozygous ttk mutant eye clones also contain supernumerary R7 cells. However, in contrast to yan, the formation of these cells in ttk mutant eye tissue is not necessarily dependent on the activity of the sina gene. Furthermore, although yan mutations dominantly interact with mutations in the Ras1, Draf, Dsor1, and rolled (rl) genes to influence R7 cell development, ttk mutations only interact with yan and rl gene mutations to affect this signaling pathway. Our data suggest that yan and ttk both function to repress inappropriate R7 cell development but that their mechanisms of action differ. In particular, TTK activity appears to be autonomously required to regulate a sina-independent mechanism of R7 determination.
Resumo:
Tuberculosis continues to be responsible for the deaths of millions of people, yet the virulence factors of the causative pathogens remain unknown. Genetic complementation experiments with strains of the Mycobacterium tuberculosis complex have identified a gene from a virulent strain that restores virulence to an attenuated strain. The gene, designated rpoV, has a high degree of homology with principal transcription or sigma factors from other bacteria, particularly Mycobacterium smegmatis and Streptomyces griseus. The homologous rpoV gene of the attenuated strain has a point mutation causing an arginine-->histidine change in a domain known to interact with promoters. To our knowledge, association of loss of bacterial virulence with a mutation in the principal sigma factor has not been previously reported. The results indicate either that tuberculosis organisms have an alternative principal sigma factor that promotes virulence genes or, more probably, that this particular mutant principal sigma factor is unable to promote expression of one or more genes required for virulence. Study of genes and proteins differentially regulated by the mutant transcription factor should facilitate identification of further virulence factors.
Resumo:
The gene encoding human plakoglobin was mapped to chromosome 17q12-q22. An intragenic restriction fragment length polymorphism was used to localize the plakoglobin gene distal to locus KRT10 and proximal to the marker D17S858. The plakoglobin gene colocalizes with the polymorphic 17q21 marker UM8 on the same cosmid insert. This subregion of chromosome 17 is known to be particularly subjected to genetic alterations in sporadic breast and ovarian tumors. We show loss of heterozygosity of the plakoglobin gene in breast and ovarian tumors. We have identified a low-frequency polymorphism in the plakoglobin coding sequence which results in an arginine to histidine substitution at amino acid position 142 of the protein, as well as a silent mutation at nucleotide position 332 of the coding sequence. This polymorphism allowed us to demonstrate an allelic association of plakoglobin with predisposition to familial breast and ovarian cancers. Our results, together with the present knowledge about the biological function of plakoglobin, suggest that plakoglobin might represent a putative tumor suppressor gene for breast and ovarian cancers.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
alpha-Melanocyte-stimulating hormone (alpha-MSH) activates the melanocortin-1 receptor (MC1R) on melanocytes to promote a switch from red/yellow pheomelanin synthesis to darker eumelanins via positive coupling to adenylate cyclase. The human MC1R locus is highly polymorphic with the specific variants associated with red hair and fair skin (RHC phenotype) postulated to be loss-of-function receptors. We have examined the ability of MC1R variants to activate the cAMP pathway in stably transfected REK293 cells. The RHC associated variants, Arg151Cys, Arg160Trp and Asp294His, demonstrated agonist-mediated increases in cAMP and phosphorylation of cAMP-responsive element-binding protein (CREB). Whereas the Asp294His variant showed severely impaired functional responses, the Arg151Cys and Arg160Trp variants retained considerable signaling capacity. Melanoma cells homozygous for either the Arg151Cys variant or consensus sequence both elicited CREB phosphorylation in response to alpha-MSH in the presence of IBMX. The common RHC alleles, Arg151Cys, Arg160Trp and Asp294His, are neither complete loss-of-function receptors nor are they functionally equivalent. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
KRAS activation and PTEN inactivation are frequent events in endometrial tumorigenesis, occurring in 10% to 30% and 26% to 80% of endometrial cancers, respectively. Because we have recently shown activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 16% of endometrioid endometrial cancers, we sought to determine the genetic context in which FGFR2 mutations occur. Analysis of 116 primary endometrioid endometrial cancers revealed that FGFR2 and KRAS mutations were mutually exclusive, whereas FGFR2 mutations were seen concomitantly with PTEN mutations. Here, we show that shRNA knockdown of FGFR2 or treatment with a pan-FGFR inhibitor, PD173074, resulted in cell cycle arrest and induction of cell death in endometrial cancer cells with activating mutations in FGFR2. This cell death in response to FGFR2 inhibition occurred within the context of loss-of-function mutations in PTEN and constitutive AKT phosphorylation, and was associated with a marked reduction in extracellular signal-regulated kinase 1/2 activation. Together, these data suggest that inhibition of FGFR2 may be a viable therapeutic option in endometrial tumors possessing activating mutations in FGFR2, despite the frequent abrogation of PTEN in this cancer type.
Resumo:
A loss of function mutation in the TRESK K2P potassium channel (KCNK18), has recently been linked with typical familial migraine with aura. We now report the functional characterisation of additional TRESK channel missense variants identified in unrelated patients. Several variants either had no apparent functional effect, or they caused a reduction in channel activity. However, the C110R variant was found to cause a complete loss of TRESK function, yet is present in both sporadic migraine and control cohorts, and no variation in KCNK18 copy number was found. Thus despite the previously identified association between loss of TRESK channel activity and migraine in a large multigenerational pedigree, this finding indicates that a single non-functional TRESK variant is not alone sufficient to cause typical migraine and highlights the genetic complexity of this disorder. Migraine is a common, disabling neurological disorder with a genetic, environmental and in some cases hormonal component. It is characterized by attacks of severe, usually unilateral and throbbing headache, can be accompanied by nausea, vomiting and photophobia and is clinically divided into two main subtypes, migraine with aura (MA) when a migraine is accompanied by transient and reversible focal neurological symptoms and migraine without aura (MO)1. The multifactorial and clinical heterogeneity of the disorder have considerably hindered the identification of common migraine susceptibility genes and most of our current understanding comes from the studies of familial hemiplegic migraine (FHM), a rare monogenic autosomal dominant form of MA2. So far, the three susceptibility genes that have been convincingly identified in FHM families all encode ion channels or transporters: CACNA1A encoding the α1 subunit of the Cav2.1 calcium channel3, SCN1A encoding the Nav1.1 sodium channel4 and ATP1A2 encoding the α2 subunit of the Na+/K+ pump5. It is believed that mutations in these genes may lead to increased efflux of glutamate and potassium in the synapse and thereby cause migraine by rendering the brain more susceptible to cortical spreading depression (CSD)6 which is thought to play a role in initiating a migraine attack7,8. However, these genes have not to date been implicated in common forms of migraine9. Nevertheless, current opinion suggests that typical migraine, like FHM, is also disorder of neuronal excitability, ion homeostasis and neurotransmitter release10,11,12. Mutations in the SLC4A4 gene encoding the sodium-bicarbonate cotransporter NBCe1, have recently been implicated in several different forms of migraine13, and a variety of genes involved in glutamate homeostasis (PGCP, MTDH14 and LRP115) and a cation channel (TRPM8)15 have also recently been implicated in migraine via genome-wide association studies. Ion channels are therefore highly likely to play an important role in the pathogenesis of typical migraine. TRESK (KCNK18), is a member of the two-pore domain (K2P) family of potassium channels involved in the control of cellular electrical excitability16. Regulation of TRESK activity by the calcium-dependent phosphatase calcineurin17, as well as its expression in dorsal root ganglia (DRG)18 and trigeminal ganglia (TG)19,20 has led to a proposed role for this channel in a variety of pain pathways. In a recent study, a frameshift mutation (F139Wfsx24) in TRESK was identified in a large multigenerational pedigree where it co-segregated perfectly with typical MA and a significant genome-wide linkage LOD score of 3.0. Furthermore, functional analysis revealed that this mutation caused a complete loss of TRESK function and that the truncated subunit was also capable of down regulating wild-type channel function. This therefore highlighted KCNK18 as potentially important candidate gene and suggested that TRESK dysfunction might play a possible role in the pathogenesis of familial migraine with visual aura20. Additional screening for KCNK18 mutations in unrelated sporadic migraine and control cohorts also identified a number of other missense variants; R10G, A34V, C110R, S231P and A233V20. The A233V variant was found only in the control cohort, whilst A34V was identified in a single Australian migraine proband for which family samples were not available, but it was not detected in controls. By contrast, the R10G, C110R, and S231P variants were found in both migraineurs and controls in both cohorts. In this study, we have investigated the functional effect of these variants to further probe the potential association of TRESK dysfunction with typical migraine.
Resumo:
RNA-dependent RNA polymerase (RDR) activities were readily detected in extracts from cauliflower and broccoli florets, Arabidopsis thaliana (L.) Heynh callus tissue and broccoli nuclei. The synthesis of complementary RNA (cRNA) was independent of a RNA primer, whether or not the primer contained a 3′ terminal 2′-O-methyl group or was phosphorylated at the 5′ terminus. cRNA synthesis in plant extracts was not affected by loss-of-function mutations in the DICER-LIKE (DCL) proteins DCL2, DCL3, and DCL4, indicating that RDRs function independently of these DCL proteins. A loss-of-function mutation in RDR1, RDR2 or RDR6 did not significantly reduce the amount of cRNA synthesis. This indicates that these RDRs did not account for the bulk RDR activities in plant extracts, and suggest that either the individual RDRs each contribute a fraction of polymerase activity or another RDR(s) is predominant in the plant extract. © CSIRO 2008.
Resumo:
Background: a fall occurs when an individual experiences a loss of balance from which they are unable to recover. Assessment of balance recovery ability in older adults may therefore help to identify individuals at risk of falls. The purpose of this 12-month prospective study was to assess whether the ability to recover from a forward loss of balance with a single step across a range of lean magnitudes was predictive of falls. Methods: two hundred and one community-dwelling older adults, aged 65–90 years, underwent baseline testing of sensorimotor function and balance recovery ability followed by 12-month prospective falls evaluation. Balance recovery ability was defined by whether participants required either single or multiple steps to recover from forward loss of balance from three lean magnitudes, as well as the maximum lean magnitude participants could recover from with a single step. Results: forty-four (22%) participants experienced one or more falls during the follow-up period. Maximal recoverable lean magnitude and use of multiple steps to recover at the 15% body weight (BW) and 25%BW lean magnitudes significantly predicted a future fall (odds ratios 1.08–1.26). The Physiological Profile Assessment, an established tool that assesses variety of sensori-motor aspects of falls risk, was also predictive of falls (Odds ratios 1.22 and 1.27, respectively), whereas age, sex, postural sway and timed up and go were not predictive. Conclusion: reactive stepping behaviour in response to forward loss of balance and physiological profile assessment are independent predictors of a future fall in community-dwelling older adults. Exercise interventions designed to improve reactive stepping behaviour may protect against future falls.
Resumo:
The imprinted gene, neuronatin (NNAT), is one of the most abundant transcripts in the pituitary and is thought to be involved in the development and maturation of this gland. In a recent whole-genome approach, exploiting a pituitary tumour cell line, we identified hypermethylation associated loss of NNAT. In this report, we determined the expression pattern of NNAT in individual cell types of the normal gland and within each of the different pituitary adenoma subtypes. In addition, we determined associations between expression and CpG island methylation and used colony forming efficiency assays (CFE) to gain further insight into the tumour-suppressor function of this gene. Immunohistochemical (IHC) co-localization studies of normal pituitaries showed that each of the hormone secreting cells (GH, PRL, ACTH, FSH and TSH) expressed NNAT. However, 33 out of 47 adenomas comprising, 11 somatotrophinomas, 10 prolactinomas, 12 corticotrophinomas and 14 non-functioning tumours, irrespective of subtype failed to express either NNAT transcript or protein as determined by quantitative real-time RT-PCR and IHC respectively. In normal pituitaries and adenomas that expressed NNAT the promoter-associated CpG island showed characteristics of an imprinted gene where approximately 50% of molecules were densely methylated. However, in the majority of adenomas that showed loss or significantly reduced expression of NNAT, relative to normal pituitaries, the gene-associated CpG island showed significantly increased methylation. Induced expression of NNAT in transfected AtT-20 cells significantly reduced CFE. Collectively, these findings point to an important role for NNAT in the pituitary and perhaps tumour development in this gland.
Resumo:
Chronic kidney disease (CKD) is characterized by renal fibrosis that can lead to end-stage renal failure, and studies have supported a strong genetic influence on the risk of developing CKD. However, investigations of the underlying molecular mechanisms are hampered by the lack of suitable hereditary models in animals. We therefore sought to establish hereditary mouse models for CKD and renal fibrosis by investigating mice treated with the chemical mutagen N-ethyl-N-nitrosourea, and identified a mouse with autosomal recessive renal failure, designated RENF. Three-week old RENF mice were smaller than their littermates, whereas at birth they had been of similar size. RENF mice, at 4-weeks of age, had elevated concentrations of plasma urea and creatinine, indicating renal failure, which was associated with small and irregularly shaped kidneys. Genetic studies using DNA from 10 affected mice and 91 single nucleotide polymorphisms mapped the Renf locus to a 5.8Mbp region on chromosome 17E1.3. DNA sequencing of the xanthine dehydrogenase (Xdh) gene revealed a nonsense mutation at codon 26 that co-segregated with affected RENF mice. The Xdh mutation resulted in loss of hepatic XDH and renal Cyclooxygenase-2 (COX-2) expression. XDH mutations in man cause xanthinuria with undetectable plasma uric acid levels and three RENF mice had plasma uric acid levels below the limit of detection. Histological analysis of RENF kidney sections revealed abnormal arrangement of glomeruli, intratubular casts, cellular infiltration in the interstitial space, and interstitial fibrosis. TUNEL analysis of RENF kidney sections showed extensive apoptosis predominantly affecting the tubules. Thus, we have established a mouse model for autosomal recessive early-onset renal failure due to a nonsense mutation in Xdh that is a model for xanthinuria in man. This mouse model could help to increase our understanding of the molecular mechanisms associated with renal fibrosis and the specific roles of XDH and uric acid. © 2012 Piret et al.
Resumo:
Familial autosomal dominant calcium pyrophosphate dihydrate (CPPD) chondrocalcinosis has previously been mapped to chromosome 5pl5. We have identified a mutation in the ANKH gene that segregates with the disease in a family with this condition. ANKH encodes a putative transmembrane inorganic pyrophosphate (PPi) transport channel. We postulate that loss of function of ANKH causes elevated extracellular PPi levels, predisposing to CPPD crystal deposition.
Resumo:
Recent studies have reported loss of function mutations in the LEMD3 gene, encoding an inner nuclear membrane protein that influences Smad signaling, as a cause of osteopoikilosis, Buschke-Ollendorff syndrome, and melorheostosis. We investigated LEMD3 in a three-generation family with osteopoikilosis from the Azores, an affected father and daughter from Ireland with osteopoikilosis (the daughter also had melorheostosis), and two other individuals from the UK with isolated melorheostosis. We found a novel C to T substitution at position 2032 bp (cDNA) in exon 8 of LEMD3, resulting in a premature stop codon at amino acid position 678. This mutation co-segregates with the osteopoikilosis phenotype in both the Azorean family and the Irish family. It was not detected in any of the six unaffected family members or in 342 healthy Caucasian individuals. No LEMD3 mutations were detected in the two patients with sporadic melorheostosis. The LEMD3 mutation reported was clearly the cause of osteopoikilosis in the two families but its relationship to melorheostosis in one of the family members is still unclear. Perhaps unsurprisingly in what is a segmental disease, we did not find LEMD3 mutations in peripheral-blood-derived DNA from the two other individuals with sporadic melorheostosis. The nature of the additional genetic and/or environmental influences required for the development of melorheostosis in those with osteopoikilosis requires further investigation.