993 resultados para Median nerve area
Resumo:
BACKGROUND: Electrical stimulation of the P6 acupuncture point reduces the incidence of postoperative nausea and vomiting (PONV). Neuromuscular blockade during general anesthesia can be monitored with electrical peripheral nerve stimulation at the wrist. The authors tested the effect of neuromuscular monitoring over the P6 acupuncture point on the reduction of PONV. METHODS: In this prospective, double-blinded, randomized control trial, the authors investigated, with institutional review board approval and informed consent, 220 women undergoing elective laparoscopic surgery anesthetized with fentanyl, sevoflurane, and rocuronium. During anesthesia, neuromuscular blockade was monitored by a conventional nerve stimulator at a frequency of 1 Hz over the ulnar nerve (n = 110, control group) or over the median nerve (n = 110, P6 group) stimulating at the P6 acupuncture point at the same time. The authors evaluated the incidence of nausea and vomiting during the first 24 h. RESULTS: No differences in demographic and morphometric data were found between both groups. The 24-h incidence of PONV was 45% in the P6 acupuncture group versus 61% in the control group (P = 0.022). Nausea decreased from 56% in the control group to 40% in the P6 group (P = 0.022), but emesis decreased only from 28% to 23% (P = 0.439). Nausea decreased substantially during the first 6 h of the observation period (P = 0.009). Fewer subjects in the acupuncture group required ondansetron as rescue therapy (27% vs. 39%; P = 0.086). CONCLUSION: Intraoperative P6 acupuncture point stimulation with a conventional nerve stimulator during surgery significantly reduced the incidence of PONV over 24 h. The efficacy of P6 stimulation is similar to that of commonly used antiemetic drugs in the prevention of PONV.
Resumo:
Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation (ESCS), and cortical stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by increasing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to enhance the efficiency of neural stimulation. It is shown that a promising approach in increasing the neural activation function is to increase the "edginess" of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute electric potential produced by proposed modified fractal geometries. The activation of 256 model axons positioned around the electrodes was then quantified, showing that modified fractal geometries required a 22% less input power while maintaining the same level of neural activation. Preliminary in vivo experiments investigating muscle evoked potentials due to median nerve stimulation showed encouraging results, supporting the feasibility of increasing neural stimulation efficiency using modified fractal geometries.
Resumo:
Background: Observation of the occurrence of protective muscle activity is advocated in assessment of the peripheral nervous system by means of neural provocation tests. However, no studies have yet demonstrated abnormal force generation in a patient population. Objectives: To analyze whether aberrations in shoulder girdle-elevation force during neural tissue provocation testing for the median nerve (NTPTI) can be demonstrated, and whether possible aberrations can be normalized following cervical mobilization. Study Design: A single-blind randomized comparative controlled study. Setting: Laboratory setting annex in a manual therapy teaching practice. Participants: Twenty patients with unilateral or bilateral neurogenic cervicobrachial pain. Methods: During the NTPTI, we used a load cell and electrogoniometer to record continuously the shoulder-girdle elevation force in relation to the available range of elbow extension. Following randomization, we analyzed the immediate treatment effects of a cervical contralateral lateral glide mobilization technique (experimental group) and therapeutic ultrasound (control group). Results: On the involved side, the shoulder-girdle elevation force occur-red earlier, and the amount of force at the end of the test was substantially, though not significantly, greater than that on the uninvolved side at the corresponding range of motion. Together with a significant reduction in pain perception after cervical mobilization, a clear tendency toward normalization of the force curve could be observed, namely, a significant decrease in force generation and a delayed onset. The control group demonstrated no differences. Conclusions: Aberrations in force generation during neural, provocation testing are present in patients with neurogenic pain and can be normalized with appropriate treatment modalities.
Resumo:
Brugada syndrome (BS) is a genetic disease identified by an abnormal electrocardiogram ( ECG) ( mainly abnormal ECGs associated with right bundle branch block and ST-elevation in right precordial leads). BS can lead to increased risk of sudden cardiac death. Experimental studies on human ventricular myocardium with BS have been limited due to difficulties in obtaining data. Thus, the use of computer simulation is an important alternative. Most previous BS simulations were based on animal heart cell models. However, due to species differences, the use of human heart cell models, especially a model with three-dimensional whole-heart anatomical structure, is needed. In this study, we developed a model of the human ventricular action potential (AP) based on refining the ten Tusscher et al (2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573 - 89) model to incorporate newly available experimental data of some major ionic currents of human ventricular myocytes. These modified channels include the L-type calcium current (ICaL), fast sodium current (I-Na), transient outward potassium current (I-to), rapidly and slowly delayed rectifier potassium currents (I-Kr and I-Ks) and inward rectifier potassium current (I-Ki). Transmural heterogeneity of APs for epicardial, endocardial and mid-myocardial (M) cells was simulated by varying the maximum conductance of IKs and Ito. The modified AP models were then used to simulate the effects of BS on cellular AP and body surface potentials using a three-dimensional dynamic heart - torso model. Our main findings are as follows. (1) BS has little effect on the AP of endocardial or mid-myocardial cells, but has a large impact on the AP of epicardial cells. (2) A likely region of BS with abnormal cell AP is near the right ventricular outflow track, and the resulting ST-segment elevation is located in the median precordium area. These simulation results are consistent with experimental findings reported in the literature. The model can reproduce a variety of electrophysiological behaviors and provides a good basis for understanding the genesis of abnormal ECG under the condition of BS disease.
Resumo:
Background Autologous chondrocyte implantation is a cell therapeutic approach for the treatment of chondral and osteochondral defects in the knee joint. The authors previously reported on the histologic and radiologic outcome of autologous chondrocyte implantation in the short- to midterm, which yields mixed results. Purpose The objective is to report on the clinical outcome of autologous chondrocyte implantation for the knee in the midterm to long term. Study Design Cohort study; Level of evidence, 3. Methods Eighty patients who had undergone autologous chondrocyte implantation of the knee with mid- to long-term follow-up were analyzed. The mean patient age was 34.6 years (standard deviation, 9.1 years), with 63 men and 17 women. Seventy-one patients presented with a focal chondral defect, with a median defect area of 4.1 cm2 and a maximum defect area of 20 cm2. The modified Lysholm score was used as a self-reporting clinical outcome measure to determine the following: (1) What is the typical pattern over time of clinical outcome after autologous chondrocyte implantation; and (2) Which patient-related predictors for the clinical outcome pattern can be used to improve patient selection for autologous chondrocyte implantation? Results The average follow-up time was 5 years (range, 2.7–9.3). Improvement in clinical outcome was found in 65 patients (81%), while 15 patients (19%) showed a decline in outcome. The median preoperative Lysholm score of 54 increased to a median of 78 points. The most rapid improvement in Lysholm score was over the 15-month period after operation, after which the Lysholm score remained constant for up to 9 years. The authors were unable to identify any patient-specific factors (ie, age, gender, defect size, defect location, number of previous operations, preoperative Lysholm score) that could predict the change in clinical outcome in the first 15 months. Conclusion Autologous chondrocyte implantation seems to provide a durable clinical outcome in those patients demonstrating success at 15 months after operation. Comparisons between other outcome measures of autologous chondrocyte implantation should be focused on the clinical status at 15 months after surgery. The patient-reported clinical outcome at 15 months is a major predictor of the mid- to long-term success of autologous chondrocyte implantation.
Resumo:
This thesis investigates changes in the oscillatory dynamics in key areas of the pain matrix during different modalities of pain. Gamma oscillations were seen in the primary somatosensory cortex in response to somatic electrical stimulation at painful and non-painful intensities. The strength of the gamma oscillations was found to relate to the intensity of the stimulus. Gamma oscillations were not seen during distal oesophageal electrical stimulation or the cold pressor test. Gamma oscillations were not seen in all participants during somatic electrical stimulation, however clear evoked responses from SI were seen in everyone. During a train of electrical pulses to the median nerve and the digit, a decrease in the frequency of the gamma oscillations was seen across the duration of the train. During a train of electrical stimuli to the median nerve and the digit, gamma oscillations were seen at ~20-100ms following stimulus onset and at frequencies between 30-100Hz. This gamma response was found to have a strong evoked component. Following a single electrical pulse to the digit, gamma oscillations were seen at 100-250ms and between 60-95Hz and were not temporally coincident with the main components of the evoked response. These results suggest that gamma oscillations may have an important role in encoding different aspects of sensory stimuli within their characteristics such as strength and frequency. These findings help to elucidate how somatic stimuli are processed within the cortex which in turn may be used to understand abnormal cases of somatosensory processing.
Resumo:
We propose a novel electroencephalographic application of a recently developed cerebral source extraction method (Functional Source Separation, FSS), which starts from extracranial signals and adds a functional constraint to the cost function of a basic independent component analysis model without requiring solutions to be independent. Five ad-hoc functional constraints were used to extract the activity reflecting the temporal sequence of sensory information processing along the somatosensory pathway in response to the separate left and right median nerve galvanic stimulation. Constraints required only the maximization of the responsiveness at specific latencies following sensory stimulation, without taking into account that any frequency or spatial information. After source extraction, the reliability of identified FS was assessed based on the position of single dipoles fitted on its retroprojected signals and on a discrepancy measure. The FS positions were consistent with previously reported data (two early subcortical sources localized in the brain stem and thalamus, the three later sources in cortical areas), leaving negligible residual activity at the corresponding latencies. The high-frequency component of the oscillatory activity (HFO) of the extracted component was analyzed. The integrity of the low amplitude HFOs was preserved for each FS. On the basis of our data, we suggest that FSS can be an effective tool to investigate the HFO behavior of the different neuronal pools, recruited at successive times after median nerve galvanic stimulation. As FSs are reconstructed along the entire experimental session, directional and dynamic HFO synchronization phenomena can be studied.
Resumo:
Objective: To investigate the dynamics of communication within the primary somatosensory neuronal network. Methods: Multichannel EEG responses evoked by median nerve stimulation were recorded from six healthy participants. We investigated the directional connectivity of the evoked responses by assessing the Partial Directed Coherence (PDC) among five neuronal nodes (brainstem, thalamus and three in the primary sensorimotor cortex), which had been identified by using the Functional Source Separation (FSS) algorithm. We analyzed directional connectivity separately in the low (1-200. Hz, LF) and high (450-750. Hz, HF) frequency ranges. Results: LF forward connectivity showed peaks at 16, 20, 30 and 50. ms post-stimulus. An estimate of the strength of connectivity was modulated by feedback involving cortical and subcortical nodes. In HF, forward connectivity showed peaks at 20, 30 and 50. ms, with no apparent feedback-related strength changes. Conclusions: In this first non-invasive study in humans, we documented directional connectivity across subcortical and cortical somatosensory pathway, discriminating transmission properties within LF and HF ranges. Significance: The combined use of FSS and PDC in a simple protocol such as median nerve stimulation sheds light on how high and low frequency components of the somatosensory evoked response are functionally interrelated in sustaining somatosensory perception in healthy individuals. Thus, these components may potentially be explored as biomarkers of pathological conditions. © 2012 International Federation of Clinical Neurophysiology.
Resumo:
Background: Recent morpho-functional evidence pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brainstem remains to be determined. We used a Functional Source Separation algorithm of EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura (MO) patients. Methods: Twenty MO patients and 20 healthy volunteers (HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brainstem and FS16 at thalamic level) and two cortical (FS20 radial and FS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450-750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced sub-cortical brainstem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between the two groups. Conclusions: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergic system may underline the interictal cortical abnormal information processing in migraine. Further studies are needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO. Written informed consent to publication was obtained from the patient(s).
Resumo:
INTRODUCTION: We investigated whether interictal thalamic dysfunction in migraine without aura (MO) patients is a primary determinant or the expression of its functional disconnection from proximal or distal areas along the somatosensory pathway. METHODS: Twenty MO patients and twenty healthy volunteers (HVs) underwent an electroencephalographic (EEG) recording during electrical stimulation of the median nerve at the wrist. We used the functional source separation algorithm to extract four functionally constrained nodes (brainstem, thalamus, primary sensory radial, and primary sensory motor tangential parietal sources) along the somatosensory pathway. Two digital filters (1-400 Hz and 450-750 Hz) were applied in order to extract low- (LFO) and high- frequency (HFO) oscillatory activity from the broadband signal. RESULTS: Compared to HVs, patients presented significantly lower brainstem (BS) and thalamic (Th) HFO activation bilaterally. No difference between the two cortical HFO as well as in LFO peak activations between the two groups was seen. The age of onset of the headache was positively correlated with HFO power in the right brainstem and thalamus. CONCLUSIONS: This study provides evidence for complex dysfunction of brainstem and thalamocortical networks under the control of genetic factors that might act by modulating the severity of migraine phenotype.
Resumo:
Background: Recent morpho-functional evidences pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brain stem remains to be determined.Aim: We used a Functional Source Separation algorithmof EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura(MO) patients. Method: Twenty MO patients and 20 healthy volunteers(HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brain stem andFS16 at thalamic level) and two cortical (FS20 radial andFS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450–750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced subcortical brain stem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between two groups. Conclusion: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergicsystem may underline the interictal cortical abnormal information processing in migraine. Further studiesare needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO.
Resumo:
PURPOSE. To evaluate and compare rates of change in neuro-retinal rim area (RA) and retinal nerve fiber layer thickness (RNFLT) measurements in glaucoma patients, those with suspected glaucoma, and normal subjects observed over time. METHODS. In this observational cohort study, patients recruited from two longitudinal studies (Diagnostic Innovations in Glaucoma Study-DIGS and African Descent and Evaluation Study-ADAGES) were observed with standard achromatic perimetry (SAP), optic disc stereophotographs, confocal scanning laser ophthalmoscopy (HRT-3; Heidelberg Engineering, Heidelberg, Germany), and scanning laser polarimetry (GDx-VCC; Carl Zeiss Meditec, Inc., Dublin, CA). Glaucoma progression was determined by the Guided Progression Analysis software for standard automated perimetry [SAP] and by masked assessment of serial optic disc stereophotographs by expert graders. Random-coefficients models were used to evaluate rates of change in average RNFLT and global RA measurements and their relationship with glaucoma progression. RESULTS. At baseline, 194 (31%) eyes were glaucomatous, 347 (55%) had suspected glaucoma, and 88 (14%) were normal. Forty-six (9%) eyes showed progression by SAP and/or stereophotographs, during an average follow-up of 3.3 (+/-0.7) years. The average rate of decline for RNFLT measurements was significantly higher in the progressing group than in the non-progressing group (-0.65 vs. -0.11 mu m/y, respectively; P < 0.001), whereas RA decline was not significantly different between these groups (-0.0058 vs. -0.0073 mm(2)/y, respectively; P = 0.727). The areas under the receiver operating characteristic (ROC) curves used to discriminate progressing versus nonprogressing eyes were 0.811 and 0.507 for the rates of change in the RNFLT and RA, respectively (P < 0.001). CONCLUSIONS. The ability to discriminate eyes with progressing glaucoma by SAP and/or stereophotographs from stable eyes was significantly greater for RNFLT than for RA measurements. (Invest Ophthalmol Vis Sci. 2010;51:3531-3539) DOI: 10.1167/iovs.09-4350
Resumo:
BACKGROUND AND OBJECTIVES: The suprascapular nerve (SSN) block is frequently performed for different shoulder pain conditions and for perioperative and postoperative pain control after shoulder surgery. Blind and image-guided techniques have been described, all of which target the nerve within the supraspinous fossa or at the suprascapular notch. This classic target point is not always ideal when ultrasound (US) is used because it is located deep under the muscles, and hence the nerve is not always visible. Blocking the nerve in the supraclavicular region, where it passes underneath the omohyoid muscle, could be an attractive alternative. METHODS: In the first step, 60 volunteers were scanned with US, both in the supraclavicular and the classic target area. The visibility of the SSN in both regions was compared. In the second step, 20 needles were placed into or immediately next to the SSN in the supraclavicular region of 10 cadavers. The accuracy of needle placement was determined by injection of dye and following dissection. RESULTS: In the supraclavicular region of volunteers, the nerve was identified in 81% of examinations (95% confidence interval [CI], 74%-88%) and located at a median depth of 8 mm (interquartile range, 6-9 mm). Near the suprascapular notch (supraspinous fossa), the nerve was unambiguously identified in 36% of examinations (95% CI, 28%-44%) (P < 0.001) and located at a median depth of 35 mm (interquartile range, 31-38 mm; P < 0.001). In the cadaver investigation, the rate of correct needle placement of the supraclavicular approach was 95% (95% CI, 86%-100%). CONCLUSIONS: Visualization of the SSN with US is better in the supraclavicular region as compared with the supraspinous fossa. The anatomic dissections confirmed that our novel supraclavicular SSN block technique is accurate.
Resumo:
Head dipping (HD) is a behavioral pattern considered to have a risk assessment or an exploratory role and is used as a complementary parameter to evaluate anxiety in experimental animals. Since rats with electrolytic lesion in the area of the median raphe nucleus displayed high frequencies of HD in a previous study, the present investigation was undertaken to confirm this observation and to determine its anxiety-related origin. HD episodes were counted in adult male Wistar rats (270-350 g) with electrolytic lesion (N = 11) and sham-lesioned controls (N = 12). When HD was measured for 60 min on an elevated open platform, lesioned rats emitted 13 times more HD than controls (264.7 ± 93.3 vs 20.3 ± 7.6 episodes), with the difference being statistically significant (P < 0.05). HD counts during 10-min sessions held 7, 14, 21, 27, and 63 days after lesion showed significantly higher means (range: 28.14 ± 5.38 to 62.85 ± 9.48) compared to sham-lesioned controls (range: 7.37 ± 1.13 to 8.5 ± 1.45). Normal rats stepped down into their home cages when the vertical distance between them and the cage was short (16 cm), and the step-down latencies increased with increasing depths (36.7 ± 7.92 to 185.87 ± 35.44 s). Lesioned rats showed a similar behavior when facing the shortest depth, but had a significantly increased number (23.28 ± 2.35 episodes) and latency (300 ± 0.00 s) of HD compared to normal rats (9.25 ± 1.37 episodes and 185.87 ± 35.44 s) when facing the greatest depth (30 cm). This suggests that HD may be a depth-measuring behavior related to risk assessment.