887 resultados para Medial prefrontal cortex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Emotion regulation is critically disrupted in depression and use of paradigms tapping these processes may uncover essential changes in neurobiology during treatment. In addition, as neuroimaging outcome studies of depression commonly utilize solely baseline and endpoint data – which is more prone to week-to week noise in symptomatology – we sought to use all data points over the course of a six month trial. Objective: To examine changes in neurobiology resulting from successful treatment. Design: Double-blind trial examining changes in the neural circuits involved in emotion regulation resulting from one of two antidepressant treatments over a six month trial. Participants were scanned pretreatment, at 2 months and 6 months posttreatment. Setting: University functional magnetic resonance imaging facility. Participants: 21 patients with Major Depressive Disorder and without other Axis I or Axis II diagnoses and 14 healthy controls. Interventions: Venlafaxine XR (doses up to 300mg) or Fluoxetine (doses up to 80mg). Main Outcome Measure: Neural activity, as measured using functional magnetic resonance imaging during performance of an emotion regulation paradigm as well as regular assessments of symptom severity by the Hamilton Rating Scale for Depression. To utilize all data points, slope trajectories were calculated for rate of change in depression severity as well as rate of change of neural engagement. Results: Those depressed individuals showing the steepest decrease in depression severity over the six months were those individuals showing the most rapid increases in BA10 and right DLPFC activity when regulating negative affect over the same time frame. This relationship was more robust than when using solely the baseline and endpoint data. Conclusions: Changes in PFC engagement when regulating negative affect correlate with changes in depression severity over six months. These results are buttressed by calculating these statistics which are more reliable and robust to week-to-week variation than difference scores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have documented that self-determined choice does indeed enhance performance. However, the precise neural mechanisms underlying this effect are not well understood. We examined the neural correlates of the facilitative effects of self-determined choice using functional magnetic resonance imaging (fMRI). Participants played a game-like task involving a stopwatch with either a stopwatch they selected (self-determined-choice condition) or one they were assigned without choice (forced-choice condition). Our results showed that self-determined choice enhanced performance on the stopwatch task, despite the fact that the choices were clearly irrelevant to task difficulty. Neuroimaging results showed that failure feedback, compared with success feedback, elicited a drop in the vmPFC activation in the forced-choice condition, but not in the self-determined-choice condition, indicating that negative reward value associated with the failure feedback vanished in the self-determined-choice condition. Moreover, the vmPFC resilience to failure in the self-determined-choice condition was significantly correlated with the increased performance. Striatal responses to failure and success feedback were not modulated by the choice condition, indicating the dissociation between the vmPFC and striatal activation pattern. These findings suggest that the vmPFC plays a unique and critical role in the facilitative effects of self-determined choice on performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinct aspect of the sense of fairness in humans is that we care not only about equality in material rewards but also about equality in non-material values. One such value is the opportunity to choose freely among many options, often regarded as a fundamental right to economic freedom. In modern developed societies, equal opportunities in work, living, and lifestyle are enforced by anti-discrimination laws. Despite the widespread endorsement of equal opportunity, no studies have explored how people assign value to it. We used functional magnetic resonance imaging to identify the neural substrates for subjective valuation of equality in choice opportunity. Participants performed a two-person choice task in which the number of choices available was varied across trials independently of choice outcomes. By using this procedure, we manipulated the degree of equality in choice opportunity between players and dissociated it from the value of reward outcomes and their equality. We found that activation in the ventromedial prefrontal cortex tracked the degree to which the number of options between the two players was equal. In contrast, activation in the ventral striatum tracked the number of options available to participants themselves but not the equality between players. Our results demonstrate that the vmPFC, a key brain region previously implicated in the processing of social values, is also involved in valuation of equality in choice opportunity between individuals. These findings may provide valuable insight into the human ability to value equal opportunity, a characteristic long emphasized in politics, economics, and philosophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. OBJECTIVE: With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. DESIGN: Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. RESULTS: A whole-brain cluster-corrected analysis (P < 0.05) showed that satiation attenuated the BOLD response to both stimulus types in the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex, nucleus accumbens, hypothalamus, and insula but increased BOLD activity in the dorsolateral prefrontal cortex (dlPFC; local maxima corrected to P ≤ 0.001). A psychophysiological interaction analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. CONCLUSIONS: These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann`s Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients` dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prefrontal cortex executes important functions such as differentiation of conflicting thoughts, correct social behavior and personality expression, and is directly implicated in different neurodegenerative diseases. We performed a shotgun proteome analysis that included IEF fractionation, RP-LC, and MALDI-TOF/TOF mass spectrometric analysis of tryptic digests from a pool of seven human dorsolateral prefrontal cortex protein extracts. In this report, we present a catalog of 387 proteins expressed in these samples, identified by two or more peptides and high confidence search scores. These proteins are involved in different biological processes such as cell growth and/or maintenance, metabolism/energy pathways, cell communication/signal trarisduction, protein metabolism, transport, regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, and immune response. This analysis contributes to the knowledge of the human brain proteome by adding sample diversity and protein expression data from an alternative technical approach. It will also aid comparative studies of different brain areas and medical conditions, with future applications in basic and clinical research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenomenologically, bipolar disorder (BD) is characterized by biphasic increases and decreases in energy. As this is a state-related phenomenon, identifying regulators responsible for this phasic dysregulation has the potential to uncover key elements in the pathophysiology of BD. Given the evidence suggesting mitochondrial complex I dysfunction in BD, we aimed to identify the main regulators of complex I in BD by reviewing the literature and using the published microarray data to examine their gene expression profiles. We also validated protein expression levels of the main complex I regulators by immunohistochemistry. Upon reviewing the literature, we found PARK-7, STAT-3, SIRT-3 and IMP-2 play an important role in regulating complex I activity. Published microarray studies however revealed no significant direction of regulation of STAT-3, SIRT-3, and IMP-2, but a trend towards downregulation of PARK-7 was observed in BD. Immunocontent of DJ-1 (PARK-7-encoded protein) were not elevated in post mortem prefrontal cortex from patients with BD. We also found a trend towards upregulation of DJ-1 expression with age. Our results suggest that DJ-1 is not significantly altered in BD subjects, however further studies are needed to examine DJ-1 expression levels in a cohort of older patients with BD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:  In order to identify whether the mechanisms associated with neurotransmitter release are involved in the pathologies of bipolar disorder and schizophrenia, levels of presynaptic [synaptosomal-associated protein-25 (SNAP-25), syntaxin, synaptophysin, vesicle-associated membrane protein, dynamin I] and structural (neuronal cell adhesion molecule and alpha-synuclein) neuronal markers were measured in Brodmann's area 9 obtained postmortem from eight subjects with bipolar I disorder (BPDI), 20 with schizophrenia and 20 controls.
Methods:  Determinations of protein levels were carried out using Western blot techniques with specific antibodies. Levels of mRNA were measured using real-time polymerase chain reaction.
Results:  In BPDI, levels of SNAP-25 (p < 0.01) and synaptophysin (p < 0.05) increased. There were no changes in schizophrenia or any other changes in BPDI. Levels of mRNA for SNAP-25 were decreased in BPDI (p < 0.05).
Conclusion:  Changes in SNAP-25 and synaptophysin in BPDI suggest that changes in specific neuronal functions could be linked to the pathology of the disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dorsolateral prefrontal cortex (DLPFC) is thought to play a key role in the cognitive control of emotion and has therefore, unsurprisingly, been implicated in the regulation of physical pain perception. This brain region may also influence the experience of social pain, which has been shown to activate similar neural networks as seen in response to physical pain. Here, we applied sham or active low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC, previously shown to exert bilateral effects in pain perception, in healthy participants. Following stimulation, participants played the “Cyberball Task”; an online ball-tossing game in which the subject participant is included or excluded. Compared to sham, rTMS did not modulate behavioural response to social exclusion. However, within the active rTMS group only, greater trait personal distress was related to enhanced negative outcomes to social exclusion. These results add further support to the notion that the effect of brain stimulation is not homogenous across individuals, and indicates the need to consider baseline individual differences when assessing response to brain stimulation. This seems particularly relevant in social neuroscience investigations, where trait factors may have a meaningful effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the distribution of NADPH-diaphorase (NADPH-d) activity in the prefrontal cortex of normal adult Cebus apella monkeys using NADPH-d histochemical protocols. The following regions were studied: granular areas 46 and 12, dysgranular areas 9 and 13, and agranular areas 32 and Oap. NADPH-d-positive neurons were divided into two distinct types, both non-pyramidal. Type I neurons had a large soma diameter (17.24 +/- 1.73 pm) and were densely stained. More than 90% of these neurons were located in the subcortical white matter and infragranular layers. The remaining type I neurons were distributed in the supragranular layers. Type II neurons had a small, round or oval soma (9.83 +/- 1.03 mu m), and their staining pattern varied markedly. Type II neurons were distributed throughout the cortex, with their greatest numerical density being observed in layers II and III. In granular areas, the number of type II neurons was up to 20 times that of type I neurons, but this proportion was smaller in agranular areas. Areal density of type II neurons was maximum in the supragranular layers of granular areas and minimum in agranular areas. Statistical analysis revealed that these areal differences were significant when comparing some specific areas. In conclusion, our results indicate a predominance of NADPH-d-positive cells in supragranular layers of granular areas in the Cebus prefrontal cortex. These findings support previous observations on the role of type II neurons as a new cortical nitric oxide source in supragranular cortical layers in primates, and their potential contribution to cortical neuronal activation in advanced mammals. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Functional neuroimaging studies have shown that specific brain areas are associated with alcohol craving including the dorsolateral prefrontal cortex (DLPFC). We tested whether modulation of DLPFC using transcranial direct current stimulation (tDCS) could alter alcohol craving in patients with alcohol dependence while being exposed to alcohol cues. Methods: We performed a randomized sham-controlled study in which 13 subjects received sham and active bilateral tDCS delivered to DLPFC (anodal left/cathodal right and anodal right/cathodal left). For sham stimulation, the electrodes were placed at the same positions as in active stimulation; however, the stimulator was turned off after 30 s of stimulation. Subjects were presented videos depicting alcohol consumption to increase alcohol craving. Results: Our results showed that both anodal left/cathodal right and anodal right/cathodal left significantly decreased alcohol craving compared to sham stimulation (p < 0.0001). In addition, we found that following treatment, craving could not be further increased by alcohol cues. Conclusions: Our findings showed that tDCS treatment to DLPFC can reduce alcohol craving. These findings extend the results of previous studies using noninvasive brain stimulation to reduce craving in humans. Given the relatively rapid suppressive effect of tDCS and the highly fluctuating nature of alcohol craving, this technique may prove to be a valuable treatment strategy within the clinical setting. (C) 2007 Elsevier Ireland Ltd. All rights reserved.