993 resultados para Measurements models
Resumo:
1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.
Resumo:
PURPOSE: Pretreatment measurements of systemic inflammatory response, including the Glasgow prognostic score (GPS), the neutrophil-to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR), the platelet-to-lymphocyte ratio (PLR) and the prognostic nutritional index (PNI) have been recognized as prognostic factors in clear cell renal cell carcinoma (CCRCC), but there is at present no study that compared these markers. METHODS: We evaluated the pretreatment GPS, NLR, MLR, PLR and PNI in 430 patients, who underwent surgery for clinically localized CCRCC (pT1-3N0M0). Associations with disease-free survival were assessed with Cox models. Discrimination was measured with the C-index, and a decision curve analysis was used to evaluate the clinical net benefit. RESULTS: On multivariable analyses, all measures of systemic inflammatory response were significant prognostic factors. The increase in discrimination compared with the stage, size, grade and necrosis (SSIGN) score alone was 5.8 % for the GPS, 1.1-1.4 % for the NLR, 2.9-3.4 % for the MLR, 2.0-3.3 % for the PLR and 1.4-3.0 % for the PNI. On the simultaneous multivariable analysis of all candidate measures, the final multivariable model contained the SSIGN score (HR 1.40, P < 0.001), the GPS (HR 2.32, P < 0.001) and the MLR (HR 5.78, P = 0.003) as significant variables. Adding both the GPS and the MLR increased the discrimination of the SSIGN score by 6.2 % and improved the clinical net benefit. CONCLUSIONS: In patients with clinically localized CCRCC, the GPS and the MLR appear to be the most relevant prognostic measures of systemic inflammatory response. They may be used as an adjunct for patient counseling, tailoring management and clinical trial design.
Resumo:
In vivo (1)H MR spectroscopy allows the non invasive characterization of brain metabolites and it has been used for studying brain metabolic changes in a wide range of neurodegenerative diseases. The prion diseases form a group of fatal neurodegenerative diseases, also described as transmissible spongiform encephalopathies. The mechanism by which prions elicit brain damage remains unclear and therefore different transgenic mouse models of prion disease were created. We performed an in vivo longitudinal (1)H MR spectroscopy study at 14.1 T with the aim to measure the neurochemical profile of Prnp -/- and PrPΔ32-121 mice in the hippocampus and cerebellum. Using high-field MR spectroscopy we were able to analyze in details the in vivo brain metabolites in Prnp -/- and PrPΔ32-121 mice. An increase of myo-inositol, glutamate and lactate concentrations with a decrease of N-acetylaspartate concentrations were observed providing additional information to the previous measurements.
Resumo:
Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.
Resumo:
The electrochemical behaviour of zinc has been extensively studied in alkaline and acid media, but only a few studies have been reported in neutral solutions, particularly in deaerated media. Zinc passivation in neutral medium and the effect of the ClO4- ion on the nucleation and growth of the passive layer is studied in this paper by a transient technique at different electrolyte concentrations and applied potentials. ZnO growth rate was shown to decrease with increasing electrolyte concentration. Moreover, passive layer growth occurred followed by pitting nucleation and growth. Film growth and pit nucleation are explained by means of the Macdonald and Engell-Stolica models.
Resumo:
In any decision making under uncertainties, the goal is mostly to minimize the expected cost. The minimization of cost under uncertainties is usually done by optimization. For simple models, the optimization can easily be done using deterministic methods.However, many models practically contain some complex and varying parameters that can not easily be taken into account using usual deterministic methods of optimization. Thus, it is very important to look for other methods that can be used to get insight into such models. MCMC method is one of the practical methods that can be used for optimization of stochastic models under uncertainty. This method is based on simulation that provides a general methodology which can be applied in nonlinear and non-Gaussian state models. MCMC method is very important for practical applications because it is a uni ed estimation procedure which simultaneously estimates both parameters and state variables. MCMC computes the distribution of the state variables and parameters of the given data measurements. MCMC method is faster in terms of computing time when compared to other optimization methods. This thesis discusses the use of Markov chain Monte Carlo (MCMC) methods for optimization of Stochastic models under uncertainties .The thesis begins with a short discussion about Bayesian Inference, MCMC and Stochastic optimization methods. Then an example is given of how MCMC can be applied for maximizing production at a minimum cost in a chemical reaction process. It is observed that this method performs better in optimizing the given cost function with a very high certainty.
Resumo:
The research was developed to evaluate the use of different types of roofing materials regularly used in poultry houses. Measurements of thermal comfort were made through the use of techniques such as the Black Globe and Humidity Index (BGHI), the Thermal Heat Load (THL) and Enthalpy (H). Conducted in the State University of Goiás, during the months of April and May, 2011, the experiment was composed of five different treatments: AC - Asbestos cement tiles, BA -Bamboo tiles, BAP - Bamboo tiles painted in white, FB -Vegetable fiber tiles and bitumen, FBP -Vegetable fiber tiles and bitumen painted in white. The experiment consisted in 15 repetitions, which were considered the different days of measurements taken. Throughout the studied period, the time of the day considered the least comfortable was the one observed at 2:00pm, and the coverage of vegetable fiber and bitumen showed the highest value of BGHI (84.1) when compared to other types of coverage, characterizing a situation of lower thermal comfort, and no difference was found for THL and H on treatments in the studied region.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Heat transfer effectiveness in nuclear rod bundles is of great importance to nuclear reactor safety and economics. An important design parameter is the Critical Heat Flux (CHF), which limits the transferred heat from the fuel to the coolant. The CHF is determined by flow behaviour, especially the turbulence created inside the fuel rod bundle. Adiabatic experiments can be used to characterize the flow behaviour separately from the heat transfer phenomena in diabatic flow. To enhance the turbulence, mixing vanes are attached to spacer grids, which hold the rods in place. The vanes either make the flow swirl around a single sub-channel or induce cross-mixing between adjacent sub-channels. In adiabatic two-phase conditions an important phenomenon that can be investigated is the effect of the spacer on canceling the lift force, which collects the small bubbles to the rod surfaces leading to decreased CHF in diabatic conditions and thus limits the reactor power. Computational Fluid Dynamics (CFD) can be used to simulate the flow numerically and to test how different spacer configurations affect the flow. Experimental data is needed to validate and verify the used CFD models. Especially the modeling of turbulence is challenging even for single-phase flow inside the complex sub-channel geometry. In two-phase flow other factors such as bubble dynamics further complicate the modeling. To investigate the spacer grid effect on two-phase flow, and to provide further experimental data for CFD validation, a series of experiments was run on an adiabatic sub-channel flow loop using a duct-type spacer grid with different configurations. Utilizing the wire-mesh sensor technology, the facility gives high resolution experimental data in both time and space. The experimental results indicate that the duct-type spacer grid is less effective in canceling the lift force effect than the egg-crate type spacer tested earlier.
Resumo:
Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.
Resumo:
Erythrina velutina (EV) and Erythrina mulungu (EM), popularly used in Brazil as tranquilizing agents, were studied. The effects of acute and chronic oral treatment with a water:alcohol extract of EV (7:3, plant grounded stem bark; acute = 100, 200, 400 mg/kg; chronic = 50, 100, 200 mg/kg) were evaluated in rats (N = 11-12) submitted to the elevated T-maze (for avoidance and escape measurements) model of anxiety. This model was selected for its presumed capacity to elicit specific subtypes of anxiety disorders recognized in clinical practice: avoidance has been related to generalized anxiety and escape to panic. Additionally, animals were treated with the same doses of EV and EM (water:alcohol 7:3, inflorescence extract) and submitted to the forced swim test for the evaluation of antidepressant activity (N = 7-10). Both treatment regimens with EV impaired elevated T-maze avoidance latencies, without altering escape, in a way similar to the reference drug diazepam (avoidance 1, mean ± SEM, acute study: 131.1 ± 45.5 (control), 9.0 ± 3.3 (diazepam), 12.7 ± 2.9 (200 mg/kg), 28.8 ± 15.3 (400 mg/kg); chronic study: 131.7 ± 46.9 (control), 35.8 ± 29.7 (diazepam), 24.4 ± 10.4 (50 mg/kg), 29.7 ± 11.5 (200 mg/kg)). Neither EV nor EM altered measurements performed in the forced swim test, in contrast to the reference drug imipramine that significantly decreased immobility time after chronic treatment. These results were not due to motor alterations since no significant effects were detected in an open field. These observations suggest that EV exerts anxiolytic-like effects on a specific subset of defensive behaviors which have been associated with generalized anxiety disorder.
Resumo:
The viscoelastic properties of edible films can provide information at the structural level of the biopolymers used. The objective of this work was to test three simple models of linear viscoelastic theory (Maxwell, Generalized Maxwell with two units in parallel, and Burgers) using the results of stress relaxation tests in edible films of myofibrillar proteins of Nile Tilapia. The films were elaborated according to a casting technique and pre-conditioned at 58% relative humidity and 22ºC for 4 days. The testing sample (15mm x 118mm) was submitted to tests of stress relaxation in an equipment of physical measurements, TA.XT2i. The deformation, imposed to the sample, was 1%, guaranteeing the permanency in the domain of the linear viscoelasticity. The models were fitted to experimental data (stress x time) by nonlinear regression. The Generalized Maxwell model with two units in parallel and the Burgers model represented the relaxation curves of stress satisfactorily. The viscoelastic properties varied in a way that they were less dependent on the thickness of the films.
Resumo:
The freezing times of fruit pulp models packed and conditioned in multi-layered boxes were evaluated under conditions similar to those employed commercially. Estimating the freezing time is a difficult practice due to the presence of significant voids in the boxes, whose influence may be analyzed by means of various methods. In this study, a procedure for estimating freezing time by using the models described in the literature was compared with experimental measurements by collecting time/temperature data. The following results show that the airflow through packages is a significant parameter for freezing time estimation. When the presence of preferential channels was considered, the predicted freezing time in the models could be 10% lower than the experimental values, depending on the method. The isotherms traced as a function of the location of the samples inside the boxes showed the displacement of the thermal center in relation to the geometric center of the product.
Resumo:
The two central goals of this master's thesis are to serve as a guidebook on the determination of uncertainty in efficiency measurements and to investigate sources of uncertainty in efficiency measurements in the field of electric drives by a literature review, mathematical modeling and experimental means. The influence of individual sources of uncertainty on the total instrumental uncertainty is investigated with the help of mathematical models derived for a balance and a direct air cooled calorimeter. The losses of a frequency converter and an induction motor are measured with the input-output method and a balance calorimeter at 50 and 100 % loads. A software linking features of Matlab and Excel is created to process measurement data, calculate uncertainties and to calculate and visualize results. The uncertainties are combined with both the worst case and the realistic perturbation method and distributions of uncertainty by source are shown based on experimental results. A comparison of the calculated uncertainties suggests that the balance calorimeter determines losses more accurately than the input-output method with a relative RPM uncertainty of 1.46 % compared to 3.78 - 12.74 % respectively with 95 % level of confidence at the 93 % induction motor efficiency or higher. As some principles in uncertainty analysis are open to interpretation the views and decisions of the analyst can have noticeable influence on the uncertainty in the measurement result.
Hydraulic and fluvial geomorphological models for a bedrock channel reach of the Twenty Mile Creek /
Resumo:
Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.