978 resultados para Measurement Variability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peerreviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha 1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 +/- 77), temperate forest (n = 12, FC = 58 +/- 72), boreal forest (n = 16, FC = 35 +/- 24), pasture (n = 4, FC = 28 +/- 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 +/- 9.0), chaparral (n = 3, FC = 27 +/- 19), tropical peatland (n = 4, FC = 314 +/- 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e. g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole biomes. Comparing the compiled FC values with co-located Global Fire Emissions Database version 3 (GFED3) FC indicates that modeling studies that aim to represent variability in FC also within biomes, still require improvements as they have difficulty in representing the dynamics governing FC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. (C) 2011 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To establish normative amplitude values for relative difference measurements of the middle latency response (MLR) in normal-hearing pediatrics and to determine if these measurements provided a significant reduction of within-group variability when compared to raw, absolute amplitude measures. A relative amplitude difference is defined in the present paper as the difference in Na-Pa amplitude between two electrodes (e.g. vertical bar Na-Pa at C3 minus Na-Pa at C4 vertical bar, or electrode effects) or between two ears (e.g. vertical bar Na-Pa on left ear stimulation minus Na-Pa on right ear stimulation vertical bar, or ear effects). In contrast, an absolute amplitude is defined as a single Na-Pa measurement made at one electrode for stimulation of one ear (e.g. Na-Pa measured at C3 on left ear stimulation). Design: Cross-sectional study. Study sample: 155 pediatrics with normal peripheral and central hearing, and no history of psychological, neurological, or learning disability issues. Results: Within-group variability was significantly smaller for relative differences when compared to absolute amplitude measures. Electrode effects showed significantly less variability than ear effects. Normative values for ear and electrode effects were reported. Conclusions: Relative differences may provide better utility in the clinical diagnosis of central auditory pathology in pediatrics when compared to absolute amplitude measures because these difference measures show significantly lower variability when examined across subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased, decreased or normal excitability to transcranial magnetic stimulation (TMS) has been reported in the motor (M1) and visual cortices of patients with migraine. Light deprivation (LD) has been reported to modulate M1 excitability in control subjects (CS). Still, effects of LD on M1 excitability compared to exposure to environmental light exposure (EL) had not been previously described in patients with migraine (MP). To further our knowledge about differences between CS and MP, regarding M1 excitability and effects of LD on M1 excitability, we opted for a novel approach by extending measurement conditions. We measured motor thresholds (MTs) to TMS, short-interval intracortical inhibition, and ratios between motor-evoked potential amplitudes and supramaximal M responses in MP and CS on two different days, before and after LD or EL. Motor thresholds significantly increased in MP in LD and EL sessions, and remained stable in CS. There were no significant between-group differences in other measures of TMS. Short-term variation of MTs was greater in MP compared to CS. Fluctuation in excitability over hours or days in MP is an issue that, until now, has been relatively neglected. The results presented here will help to reconcile conflicting observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. Knowledge of the spatial and temporal distribution of CCN in the atmosphere is essential to understand and describe the effects of aerosols in meteorological models. In this study, CCN properties were measured in polluted and pristine air of different continental regions, and the results were parameterized for efficient prediction of CCN concentrations.The continuous-flow CCN counter used for size-resolved measurements of CCN efficiency spectra (activation curves) was calibrated with ammonium sulfate and sodium chloride aerosols for a wide range of water vapor supersaturations (S=0.068% to 1.27%). A comprehensive uncertainty analysis showed that the instrument calibration depends strongly on the applied particle generation techniques, Köhler model calculations, and water activity parameterizations (relative deviations in S up to 25%). Laboratory experiments and a comparison with other CCN instruments confirmed the high accuracy and precision of the calibration and measurement procedures developed and applied in this study.The mean CCN number concentrations (NCCN,S) observed in polluted mega-city air and biomass burning smoke (Beijing and Pearl River Delta, China) ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air at remote continental sites (Swiss Alps, Amazonian rainforest). Effective average hygroscopicity parameters, κ, describing the influence of chemical composition on the CCN activity of aerosol particles were derived from the measurement data. They varied in the range of 0.3±0.2, were size-dependent, and could be parameterized as a function of organic and inorganic aerosol mass fraction. At low S (≤0.27%), substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity were observed in polluted air (fresh soot particles with κ≈0.01). Thus, the aerosol particle mixing state needs to be known for highly accurate predictions of NCCN,S. Nevertheless, the observed CCN number concentrations could be efficiently approximated using measured aerosol particle number size distributions and a simple κ-Köhler model with a single proxy for the effective average particle hygroscopicity. The relative deviations between observations and model predictions were on average less than 20% when a constant average value of κ=0.3 was used in conjunction with variable size distribution data. With a constant average size distribution, however, the deviations increased up to 100% and more. The measurement and model results demonstrate that the aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the measurement results and parameterizations presented in this study can be directly implemented in detailed process models as well as in large-scale atmospheric and climate models for efficient description of the CCN activity of atmospheric aerosols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particulate matter is one of the main atmospheric pollutants, with a great chemical-environmental relevance. Improving knowledge of the sources of particulate matter and of their apportionment is needed to handle and fulfill the legislation regarding this pollutant, to support further development of air policy as well as air pollution management. Various instruments have been used to understand the sources of particulate matter and atmospheric radiotracers at the site of Mt. Cimone (44.18° N, 10.7° E, 2165 m asl), hosting a global WMO-GAW station. Thanks to its characteristics, this location is suitable investigate the regional and long-range transport of polluted air masses on the background Southern-Europe free-troposphere. In particular, PM10 data sampled at the station in the period 1998-2011 were analyzed in the framework of the main meteorological and territorial features. A receptor model based on back trajectories was applied to study the source regions of particulate matter. Simultaneous measurements of atmospheric radionuclides Pb-210 and Be-7 acquired together with PM10 have also been analysed to acquire a better understanding of vertical and horizontal transports able to affect atmospheric composition. Seasonal variations of atmospheric radiotracers have been studied both analysing the long-term time series acquired at the measurement site as well as by means of a state-of-the-art global 3-D chemistry and transport model. Advection patterns characterizing the circulation at the site have been identified by means of clusters of back-trajectories. Finally, the results of a source apportionment study of particulate matter carried on in a midsize town of the Po Valley (actually recognised as one of the most polluted European regions) are reported. An approach exploiting different techniques, and in particular different kinds of models, successfully achieved a characterization of the processes/sources of particulate matter at the two sites, and of atmospheric radiotracers at the site of Mt. Cimone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bivalve mollusk shells are useful tools for multi-species and multi-proxy paleoenvironmental reconstructions with a high temporal and spatial resolution. Past environmental conditions can be reconstructed from shell growth and stable oxygen and carbon isotope ratios, which present an archive for temperature, freshwater fluxes and primary productivity. The purpose of this thesis is the reconstruction of Holocene climate and environmental variations in the North Pacific with a high spatial and temporal resolution using marine bivalve shells. This thesis focuses on several different Holocene time periods and multiple regions in the North Pacific, including: Japan, Alaska (AK), British Columbia (BC) and Washington State, which are affected by the monsoon, Pacific Decadal Oscillation (PDO) and El Niño/Southern Oscillation (ENSO). Such high-resolution proxy data from the marine realm of mid- and high-latitudes are still rare. Therefore, this study contributes to the optimization and verification of climate models. However, before using bivalves for environmental reconstructions and seasonality studies, life history traits must be well studied to temporally align and interpret the geochemical record. These calibration studies are essential to ascertain the usefulness of selected bivalve species as paleoclimate proxy archives. This work focuses on two bivalve species, the short-lived Saxidomus gigantea and the long-lived Panopea abrupta. Sclerochronology and oxygen isotope ratios of different shell layers of P. abrupta were studied in order to test the reliability of this species as a climate archive. The annual increments are clearly discernable in umbonal shell portions and the increments widths should be measured in these shell portions. A reliable reconstruction of paleotemperatures may only be achieved by exclusively sampling the outer shell layer of multiple contemporaneous specimens. Life history traits (e.g., timing of growth line formation, duration of the growing season and growth rates) and stable isotope ratios of recent S. gigantea from AK and BC were analyzed in detail. Furthermore, a growth-temperature model based on S. gigantea shells from Alaska was established, which provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). This approach allows the independent measurement of water temperature and salinity from variations in the width of lunar daily growth increments of S. gigantea. Temperature explains 70% of the variability in shell growth. The model was calibrated and tested with modern shells and then applied to archaeological specimens. The time period between 988 and 1447 cal yrs BP was characterized by colder (~1-2°C) and much drier (2-5 PSU) summers, and a likely much slower flowing ACC than at present. In contrast, the summers during the time interval of 599-1014 cal yrs BP were colder (up to 3°C) and fresher (1-2 PSU) than today. The Aleutian Low may have been stronger and the ACC was probably flowing faster during this time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperoxaluria is a major risk factor for kidney stone formation. Although urinary oxalate measurement is part of all basic stone risk assessment, there is no standardized method for this measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart rate variability (HRV) and cardiorespiratory coordination, i.e. the temporal interplay between oscillations of heartbeat and respiration, reflect information related to the cardiovascular and autonomic nervous system. The purpose of this study was to investigate the relationship between spectral measures of HRV and measures of cardiorespiratory coordination. In 127 subjects from a normal population a 24 h Holter ECG was recorded. Average heart rate (HR) and the following HRV parameters were calculated: very low (VLF), low (LF) and high frequency (HF) oscillations and LF/HF. Cardiorespiratory coordination was quantified using average respiratory rate (RespR), the ratio of heart rate and respiratory rate (HRR), the phase coordination ratio (PCR) and the extent of cardiorespiratory coordination (PP). Pearson's correlation coefficient r was used to quantify the relationship between each pair of the variables across all subjects. HR and HRR correlated strongest during daytime (r = 0.89). LF/HF and PP showed a negative correlation to a reasonable degree (r = -0.69). During nighttime sleep these correlations decreased whereas the correlation between HRR and RespR (r = -0.47) as well as between HRR and PCR (r = 0.73) increased substantially. In conclusion, HRR and PCR deliver considerably different information compared to HRV measures whereas PP is partially linked reciprocally to LF/HF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To quantify the interobserver variability of abdominal aortic aneurysm (AAA) neck length and angulation measurements. MATERIALS AND METHODS: A total of 25 consecutive patients scheduled for endovascular AAA repair underwent follow-up 64-row computed tomographic (CT) angiography in 0.625-mm collimation. AAA neck length and angulation were determined by four blinded, independent readers. AAA neck length was defined as the longitudinal distance between the first transverse CT slice directly distal to the lowermost renal artery and the first transverse CT slice that showed at least a 15% larger outer aortic wall diameter versus the diameter measured directly below the lowermost renal artery. Infrarenal AAA neck angulation was defined as the true angle between the longitudinal axis of the proximal AAA neck and the longitudinal axis of the AAA lumen as analyzed on three-dimensional CT reconstructions. RESULTS: Mean deviation in aortic neck length determination was 32.3% and that in aortic neck angulation was 32.1%. Interobserver variability of aortic neck length and angulation measurements was considerable: in any reader combination, at least one measurement difference was outside the predefined limits of agreement. CONCLUSIONS: Assessment of the longitudinal extension and angulation of the infrarenal aortic neck is associated with substantial observer variability, even if measurement is carried out according to a standardized protocol. Further studies are mandatory to assess dedicated technical approaches to minimize variance in the determination of the longitudinal extension and angulation of the infrarenal aortic neck.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The interrupter technique is increasingly used in preschool children to assess airway resistance (Rint). Use of a bacterial filter is essential for prevention of cross-infection in a clinical setting. It is not known how large an effect this extra resistance and compliance exert upon interrupter measurements, especially on obstructive airways and in smaller children. We aim to determine the contribution of the filter to Rint, in a sample of children attending lung function testing at an asthma clinic. METHODS: Interrupter measurements were performed according to ATS/ERS guidelines during quiet normal breathing at an expiratory flow trigger of 200 ml s(-1), with the child seated upright with cheeks supported and wearing a nose clip. A minimum of 10 interrupter measurements was made with and without a bacterial filter. Spirometric and plethysmographic tests were also performed. RESULTS: A small but significant difference (0.12 (95% CI 0.06-0.17) kPa s L(-1), P = 0.0002) with 2x SD of 0.34 kPa s L(-1) was observed between Rint with and without filter in 39 children, with a large spread. This difference was not dependent on Rint magnitude, age or height, nor on lung function parameters (effective resistance, forced expiratory volume in 1 sec, and maximal expiratory flow at 50% of expired vital capacity). CONCLUSIONS: A bacterial filter causes a small difference but is not clinically significant, with a wide spread comparable to the variability of the technique and recommended cut-offs for assessing repeatability and bronchodilation. Age, height or severity of obstruction need not be corrected for in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variability of toxicity data contained within databases was investigated using the widely used US EPA ECOTOX database as an example. Fish acute lethality (LC50) values for 44 compounds (for which at least 10 data entries existed) were extracted from the ECOTOX database yielding a total of 4654 test records. Significant variability of LC50 test results was observed, exceeding several orders of magnitude. In an attempt to systematically explore potential causes of the data variability, the influence of biological factors (such as test species or life stages) and physical factors (such as water temperature, pH or water hardness) were examined. Even after eliminating the influence of these inherent factors, considerable data variability remained, suggesting an important role of factors relating to technical and measurement procedures. The analysis, however, was limited by pronounced gaps in the test documentation. Of the 4654 extracted test reports, 66.5% provided no information on the fish life stage used for testing. Likewise, water temperature, hardness or pH were not recorded in 19.6%, 48.2% and 41.2% of the data entries, respectively. From these findings, we recommend the rigorous control of data entries ensuring complete recording of testing conditions. A more consistent database will help to better discriminate between technical and natural variability of the test data, which is of importance in ecological risk assessment for extrapolation from laboratory tests to the field, and also might help to develop correction factors that account for systematic differences in test results caused by species, life stage or test conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this longitudinal study, conducted in a neonatal intensive care unit, was to characterize the response to pain of high-risk very low birth weight infants (<1,500 g) from 23 to 38 weeks post-menstrual age (PMA) by measuring heart rate variability (HRV). Heart period data were recorded before, during, and after a heel lanced or wrist venipunctured blood draw for routine clinical evaluation. Pain response to the blood draw procedure and age-related changes of HRV in low-frequency and high-frequency bands were modeled with linear mixed-effects models. HRV in both bands decreased during pain, followed by a recovery to near-baseline levels. Venipuncture and mechanical ventilation were factors that attenuated the HRV response to pain. HRV at the baseline increased with post-menstrual age but the growth rate of high-frequency power was reduced in mechanically ventilated infants. There was some evidence that low-frequency HRV response to pain improved with advancing PMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate measurement of abdominal aortic aneurysms is necessary to predict rupture risk and, more recently, to follow aneurysm sac behavior following endovascular repair. Up until this point, aneurysm diameter has been the most common measurement utilized for these purposes. Although aneurysm diameter is predictive of rupture, accurate measurement is hindered by such factors as aortic tortuosity and interobserver variability, and it does not account for variations in morphology such as saccular aneurysms. Additionally, decreases in aneurysm diameter do not completely describe the somewhat complex remodeling seen following endovascular repair of aortic aneurysms. Measurement of aneurysm volume has the advantage of describing aneurysm morphology in a multidimensional fashion, but it has not been readily available or easily measured until recently. This has changed with the introduction of commercially available software tools that permit quicker and easier to perform volume measurements. Whether it is time for volume to replace, or compliment, diameter is the subject of the current debate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method for rapid identification and precise quantification of slope deformation using a portable radar interferometer. A rockslide with creep-like behavior was identified in the rugged and inaccessible headwaters of the Illgraben debris-flow catchment, located in the Central Swiss Alps. The estimated volume of the moving rock mass was approximately 0.5 x 10(6) m(3) with a maximum daily (3-D) displacement rate of 3 mm. Fast scene acquisition in the order of 6 s/scene led to uniquely precise mapping of spatial and temporal variability of atmospheric phase delay. Observations led to a simple qualitative model for prediction of atmospheric disturbances using a simple model for solar radiation, which can be used for advanced campaign planning for short observation periods (hours to days).